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Summary 13 

Motivated by accelerating anthropogenic extinctions, decades of biodiversity-ecosystem function 14 

(BEF) experiments show that ecosystem function declines with species loss from local communities. 15 

Yet, at the local scale, changes in species’ total and relative abundances are more common than 16 

species loss. The consensus best biodiversity measures are Hill numbers, which use a scaling 17 

parameter, ℓ, to emphasize rarer versus more common species. Shifting that emphasis captures 18 

distinct, function-relevant biodiversity gradients beyond species richness. Here, we hypothesized that 19 

Hill numbers that emphasize rare species more than richness does may distinguish large, complex, 20 

and presumably higher-functioning assemblages from smaller and simpler ones. In this study, we 21 

tested which values of ℓ produce the strongest BEF relationships in community datasets of ecosystem 22 

functions provided by wild, free-living organisms. We found that ℓ values that emphasized rare species 23 

more than richness does most often correlated most strongly with ecosystem functions. As emphasis 24 

shifted to more common species, BEF correlations were often weak and/or negative. We argue that 25 

unconventional Hill diversities that shift emphasis towards rarer species may be useful for describing 26 

biodiversity change, and that employing a wide spectrum of Hill numbers can clarify mechanisms 27 

underlying BEF relationships.  28 

  29 
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Introduction 30 

A central question in community ecology is, “how will ongoing shifts in biodiversity affect ecosystem 31 

function?” In experiments that vary species richness while controlling other community properties, 32 

the answer has been clear for some time: ecosystem function has a positive, saturating relationship 33 

with species richness [1–3]. There is ongoing interest in “scaling up” research to resolve whether 34 

similar patterns hold in natural ecosystems [4,5]. However, richness is not a robust measure of  35 

biodiversity in observational data taken from natural ecosystems [6], in large part because most 36 

species are rare [7] and likely to be absent from samples. Further, richness often tracks biodiversity 37 

gradients poorly, because species composition and abundance can change dramatically with little to 38 

no change in observed species richness [8–10]. Therefore, other metrics of biodiversity may provide 39 

improved clarity about the linkages between biodiversity and ecosystem function (BEF) outside 40 

experimental contexts.  41 

 42 

There are both historical and conceptual reasons that BEF research has focused on richness as a 43 

measure of biodiversity. Since at least the 1960s, there has been extensive research on how 44 

productivity affects species richness [1]. Motivated by intensifying biodiversity loss in the 1980s, 45 

declines in richness were (at least implicitly) the global change pattern that seminal BEF studies, with 46 

their focus on species loss (e.g., [11]), aimed to understand. This prompted a wave of experiments on 47 

how species richness affects ecosystem function [2]. Thus, richness was a natural choice, both 48 

because of ecology’s long focus on how richness might respond to ecosystem functions like 49 

productivity, and because of a collective sense that species loss was the correct, or at least most 50 

convenient, way to frame anthropogenic changes in biodiversity. Furthermore, richness was 51 

considered a good proxy for functional diversity and redundancy, which were considered the key 52 

mechanisms through which biodiversity maintains ecosystem function [12–14]. However, the choice 53 

of richness may not have been based on theoretical expectation that richness, rather than other 54 

abundance-weighted diversity measures, best described functionally important biodiversity 55 

gradients.  56 

 57 

Using species richness as the key biodiversity measure poses methodological problems for BEF 58 

research, especially when community properties other than richness vary, as in naturalistic systems. 59 

Species richness is not only sensitive to the extent and depth of sampling, but also to the distribution 60 
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of relative abundances in the sampled assemblage. To illustrate this, consider the difficulty of 61 

accurately measuring species richness in a community with one hyper-dominant species and many 62 

very rare species, versus measuring richness in a community in which abundance is evenly 63 

distributed. Richness, like other diversity measures, summarizes the distribution of relative 64 

abundances in an assemblage, and when estimated from data, cannot be independent from that 65 

distribution, even if such a measure were desirable [6,15]. However, different diversity measures vary 66 

in the extent to which they emphasize rare vs. common species, with species richness heavily 67 

emphasizing rare species. A unified family of diversity measures, known as “Hill numbers” or “Hill 68 

diversities,” summarizes a distribution of relative abundances as the abundance-weighted, 69 

generalized mean rarity [16–18]. Hill numbers are governed by a scaling parameter, ℓ, that scales 70 

species rarity when computing the mean, and higher values of ℓ afford more leverage, or emphasis, to 71 

rare species, while lower values emphasize common species more [18]. 72 

 73 

The Hill diversity of an assemblage is not a single value, but rather a spectrum that varies 74 

continuously across ℓ [6,16] (Figure 1), raising the question of how ecosystem function relates to 75 

biodiversity measures with different emphasis on common vs. rare species. While several recent 76 

studies have compared whether richness (ℓ = 1), exponentiated Shannon (ℓ = 0), or inverse Simpson (ℓ 77 

= -1) best explains ecosystem function [19–22], there has been no examination of how Hill numbers 78 

relate to ecosystem function across a wide range of ℓ values. This is a striking knowledge gap because, 79 

although nearly all studies of the relationship between biodiversity and ecosystem function have used 80 

species richness as a measure of diversity [3], other diversity measures could both better  describe 81 

variation in biodiversity, and also have stronger links to ecosystem functioning. Furthermore, Hill 82 

diversities with ℓ > 1, which emphasize rare species even more than richness does, have scarcely been 83 

studied at all, not to mention in relationship to ecosystem function. Thus, biodiversity-function 84 

studies may be underestimating the importance of biodiversity for function by not considering Hill 85 

diversities with different emphases on rare and common species via different values of the scaling 86 

parameter ℓ.  87 

 88 

Despite clear declines in richness at the global scale, local changes in biodiversity and their 89 

connection to function are likely better captured by measuring total abundance and species’ relative 90 

abundances [8,23], for at least three reasons. First, as already discussed, observed richness is a poor 91 
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predictor of true richness [24], and good estimators of true richness based only on species frequencies 92 

in samples may never exist [25]. Thus, even if underlying variation in species richness correlates 93 

strongly with, or even drives, ecosystem function, estimating richness from samples could severely 94 

obscure the underlying pattern. Second, although observed richness does increase with observed 95 

abundance, to the extent that abundance per se drives function, Hill diversities that better reflect 96 

abundance (i.e., when ℓ >>1) should be stronger correlates of function than richness (ℓ = 1) is. Third, if 97 

diversity effects on function are mediated by positive species interactions [3,26–28], more probable 98 

and stronger between equally abundant species [29,30], Hill diversities that better reflect the 99 

probability of interspecific encounter (e.g. Hill-Simpson diversity, at ℓ = -1 [31]) might explain function 100 

better than richness does.  101 

 102 

Here, we ask how biodiversity-ecosystem function correlations in observational datasets change in 103 

sign and magnitude across a wide range of values of the scaling parameter ℓ. In natural communities, 104 

classic BEF mechanisms such as selection and complementarity co-occur with other sources of 105 

variation in function, such as abundance, evenness, demography, and environment [32,33]. 106 

Researchers variously use mathematical partitions [34] or regression and path analysis [32,35] to 107 

partially account for subsets of these factors, depending on their system knowledge, assumptions, 108 

and preferred study focus. To focus on what different diversity scaling factors reveal, we keep 109 

analyses simple and general by presenting the overall correlation between total function and diversity 110 

across natural communities, which represents the net effects of many factors. In the context of these 111 

multiple correlations, we analyze ecosystem functions that can be expressed as the product of mean 112 

per-capita function and total abundance, which works well for many functions [36,37]. As a first step 113 

towards a more granular approach, we also present separate correlations between diversity and total 114 

abundance [38] and between diversity and per-capita function, which captures selection effects due 115 

to shifts in community composition, together with complementarity effects on individual-level 116 

function. We explore whether diversity measures other than richness can better explain BEF patterns 117 

and potentially help identify BEF mechanisms in natural systems.  118 

 119 

In this study, we use observational community datasets on three ecosystem functions to ask: 120 

1) Which values of the Hill diversity scaling factor ℓ produce the strongest biodiversity- 121 

ecosystem function correlations? 122 
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2) How do biodiversity-ecosystem function correlations change in sign and strength over a wide 123 

range of values of the Hill diversity scaling factor ℓ? 124 

3) What is the role of absolute abundance in shaping BEF correlations over the Hill diversity 125 

spectrum? 126 

 127 

Materials and Methods 128 

To find how biodiversity-ecosystem function correlations change with different diversity scaling, we 129 

used previously published community datasets that recorded both the abundance and function of 130 

species at multiple sites. We chose datasets of disparate ecosystem functions and spatial scales: 131 

pollination by wild bee visitors to a landscape-scale array of three plant species [39,40], reef fish 132 

biomass from dive surveys replicated within 32 globally distributed geographic regions [41,42], and 133 

above-ground tree biomass in census plots replicated within four tropical forests [43,44] (Table 1). In 134 

each system, total function of a community can be estimated as the summed contribution across 135 

species (or individuals) present in the community. Pollination was measured as the product of first, 136 

the typical number of pollen grains deposited during a single visit of a focal bee taxon to the focal 137 

plant species, and second, the number of observed visits to the focal plant species by the focal bee 138 

taxon. Reef fish biomass was measured by visually estimating individual fish body lengths during dive 139 

surveys, which were then used to calculate biomass using species-specific allometric equations. 140 

Tropical tree biomass was measured by converting observed individual diameter at breast height into 141 

biomass estimates using taxon-specific allometric equations that included information about wood 142 

density [45,46]. In total, we used 39 community datasets, each consisting of one function measured 143 

across a collection of assemblages.  144 

 145 

Which value of ℓ produces the strongest biodiversity- ecosystem function correlations? 146 

We computed Hill diversity as a function of species relative abundances, p_1, p_2, …, p_S, and a 147 

scaling factor, ℓ, using the formula 148 

 149 
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or its limit as ℓ approaches zero (exponential Shannon entropy) [18,47]. Historically, it has been more 151 

common to express Hill diversity with a scaling parameter “a” or “q”, equal to 1-ℓ [6,16,48]. We used 152 

the expression above (with the scaling parameter ℓ, instead), to highlight that this expression is a 153 

specific example of the more general weighted power mean [17,18]. This ℓ formulation’s biggest 154 

advantage over the q-formulation is that it clarifies the differences between weights (abundances) 155 

and the rarity scaling controlled by the parameter ℓ [18]. Furthermore, because the equations for 156 

richness, Hill Shannon, and Hill-Simpson diversities straddle ℓ = 0, this formulation may support the 157 

intuition that the spectrum of Hill diversity measures can extend in either direction (Figure 1), either 158 

further emphasizing common species (as ℓ gets increasingly negative) or further emphasizing rare 159 

ones (as ℓ gets increasingly positive).  160 

 161 

We used observed species abundances to calculate species diversities at each site as the Hill diversity 162 

along a wide range of ℓ values (from -10 to +10 at intervals of 0.05) (Figure S1). We calculated total 163 

function as the sum of species’ functions at each site. We computed the correlation between the 164 

natural logarithm of each diversity and the natural logarithm of total function, across all sites in the 165 

community dataset (hereafter, the “BEF correlation”). We focused on the logarithms of function, and 166 

later, abundance variables because log(total function) = log(abundance) + log(per capita function), 167 

and we also log-transformed diversity because we anticipated that across the wide array of 168 

ecosystems considered, multiplicative, rather than additive, differences in diversity would be most 169 

comparable. To identify the ℓ value that produced the strongest BEF correlation in each community 170 

dataset, we plotted the correlation against the scaling factor ℓ. We identified the single ℓ value with 171 

the largest absolute correlation (i.e., largest R-squared for the relationship between log(diversity) and 172 

log(function)).  173 

 174 

How do biodiversity-ecosystem function correlations change in sign and strength over a wide range of 175 

values of the Hill diversity scaling factor ℓ? 176 

To determine not only which ℓ value produced the strongest BEF correlation across community 177 

datasets, but also to see how adjusting the Hill diversity scaling parameter affects BEF relationships 178 

more comprehensively, we plotted the BEF correlation against the Hill diversity scaling factor ℓ for 179 

each community dataset. We examined curves to identify patterns in the sign and strength of the BEF 180 

correlation along the spectrum of emphasis on common and rare species.  181 
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 182 

What is the role of absolute abundance in shaping BEF correlations?  183 

To begin to separate effects of total and relative abundance on BEF correlations across the Hill 184 

diversity spectrum, we looked separately at the relationships between diversity and two 185 

complementary components of total function, namely total abundance and mean per-capita function. 186 

We used the same graphical approach we described above, regarding the sign and strength of the BEF 187 

correlation across the Hill diversity spectrum. For each community dataset, we found the correlation 188 

between the natural logarithm of Hill diversity at each site and either the natural logarithm of total 189 

abundance at each site, or the natural logarithm of mean per-capita function at each site, and plotted 190 

these correlations against the Hill diversity scaling parameter ℓ. Although on the logarithmic scale, 191 

abundance and mean per-capita function combine additively to create total function, the BEF 192 

correlation does not additively decompose into abundance by biodiversity and per-capita function by 193 

biodiversity correlations, as there is also covariance between abundance and per-capita function. 194 

Acknowledging this caveat, we suggest that by partitioning total function into additive components 195 

and examining how each of these relates to biodiversity gradients across the Hill spectrum, we can 196 

better characterize the role of total abundance in generating patterns in the BEF correlation itself.  197 

 198 

Results 199 

Which value of ℓ produces the strongest biodiversity- ecosystem function correlations? 200 

For most datasets, the strongest biodiversity-ecosystem correlations were located at or just above 201 

richness (ℓ = 1), with a mode at ℓ = 1.5 (Figure 2). A substantial minority (11 of 39 datasets) had 202 

strongest BEF correlations at values of ℓ > 5, including a peak at ℓ = 10, the largest value of ℓ we 203 

considered. There were a few outliers: Two tree carbon storage datasets had their strongest BEF 204 

correlations near inverse Simpson (ℓ = -1) and exponential Shannon (ℓ = 0) diversities, and a single fish 205 

dataset had a strongest BEF correlation at ℓ = -10, the smallest value of ℓ we considered (Figure 2). 206 

 207 

How do biodiversity-ecosystem function correlations change in sign and strength over a wide range of 208 

values of the Hill diversity scaling factor ℓ? 209 

Across all ecosystem functions, we found common patterns in the relationship between the BEF 210 

correlation and the Hill diversity scaling parameter, ℓ. When ℓ was < 1, the diversity-function 211 

correlation was typically weak and could be positive or negative (Figure 3). Near ℓ = 1, the diversity-212 
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function correlation rapidly increased, although a substantial minority of community datasets first 213 

showed a sharp negative turn in the relationship near Hill-Simpson and Hill-Shannon diversities 214 

(Figure 3 b-d). Across all the datasets we considered, the mean correlation between log(diversity) and 215 

log(total function) was not significantly different from zero for either Hill-Simpson or Hill-Shannon 216 

diversity (p>0.28 for two-sided Student’s t-test, with no correction for multiple tests). At richness (ℓ = 217 

1), almost all datasets showed positive diversity-function correlations, with the mean R2 = 0.381. For 218 

most datasets, the strongest correlations were located near richness, with a mode near ℓ = 1.5, where 219 

the mean R2 was 0.445, after which the diversity-function correlation slowly declined as ℓ values 220 

continued to increase (Figure 3). A substantial minority of datasets showed continually stronger 221 

relationships as ℓ increased (some profiles in Figure 3 b, c), leading to highest R2  values at or near the 222 

maximum ℓ we considered (ℓ = 10).  223 

 224 

This study was not designed to contrast trends between ecosystem functions, but it is important to 225 

note that the relationship between the BEF correlation, and the emphasis the diversity metric puts on 226 

rare vs. common species (i.e., the value of ℓ), did not appear uniform across systems. For the three bee 227 

community datasets, total pollen deposition and bee diversity were positively correlated at every 228 

value of ℓ. Correlation strength peaked at richness (ℓ = 1) or just beyond (ℓ = 2), but remained relatively 229 

strong across all higher values of ℓ (Figure 3a). For the 32 reef fish community datasets, total fish 230 

biomass and fish diversity tended to be weakly and often negatively correlated at low ℓ values. 231 

Correlation strength tended to peak either slightly above richness at ℓ = 1.5, or grow with ℓ for an 232 

observed peak near the maximum value considered (ℓ = 10) (Figure 2, Figure 3 b, c). When considering 233 

either very high or very low ℓ values, note that at either end of the Hill number spectrum, diversities 234 

rapidly converged towards their maximum or minimum asymptote. Thus, large changes in the BEF 235 

correlation rarely occurred outside a fairly narrow range between ℓ = -2 and 2. Finally, the four tropical 236 

tree community datasets showed generally weak correlations. In two tree datasets, BEF correlation 237 

strength peaked at intermediate ℓ values where the BEF correlation was strongly negative (Figure 3 d). 238 

In another (Barro Colorado Island) diversity-function correlation was negative even at high ℓ values 239 

(Figure 3 d, orange line), but modestly positive for negative ℓ values.  240 

 241 

What is the role of absolute abundance in shaping BEF correlations?  242 
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As expected, the relationship between diversity and abundance was mostly similar to the relationship 243 

between diversity and function, as total abundance underlies function in our datasets. This can be 244 

seen in the similar shape of the curves showing the correlation between log(diversity) and either 245 

log(function) (Figure 3) or log(abundance) (Figure 4 a-d), as the sign and strength of correlation 246 

typically moved in similar ways across the ℓ spectrum. In almost all cases, the correlation between 247 

log(diversity) and log(abundance) was very strong (and in many cases approached unity), for large, 248 

positive values of the Hill diversity scaling parameter ℓ. As previously remarked, this result is a 249 

mathematical inevitability when datasets contain very rare species/singletons. Additionally, across 250 

datasets, we found that the rise towards the high correlation observed for large ℓ values typically 251 

occurred in the range of ℓ values typically considered by ecologists (-1 to 1), likely reflecting biological 252 

and sampling linkages between abundance and diversity; the correlation frequently saturated once ℓ 253 

was greater than two. While for some community datasets, diversity was largely independent of 254 

abundance for negative ℓ values, we also saw community datasets in which log(abundance) and 255 

log(diversity) had modest to strong negative correlation across negative ℓ values. Because Hill 256 

diversities typically change little with ℓ below -2 [6], this result implies that in these systems, total 257 

abundance and the degree of dominance were positively linked [49].  258 

 259 

While the curves in Figures 3 a-d and 4 a-d show strong resemblance, for some community datasets 260 

the BEF and diversity-abundance relationships diverged, implying those BEF relationships resulted 261 

from processes other than abundance. For example, correlations between abundance and diversity 262 

were always strongly positive for the reef fish data for large, positive ℓ values, but in some reef fish 263 

community datasets, correlations between diversity and function were only weakly positive at higher 264 

ℓ values (Figure 4 b, c). Such divergences between the diversity-function and diversity-abundance 265 

curves could be due to strong and/or countervailing relationships between mean per-capita function 266 

and diversity, which also showed some overall patterns across community datasets (Figure 4 e-h). In 267 

general, Hill diversities with negative ℓ values were positively related to per-capita function, 268 

suggestive of a positive relationship between evenness and mean per-capita function. This pattern 269 

was not ubiquitous, however, with notable exceptions in both tree and bee community datasets 270 

(Figure 4 e, h). We found that the correlation between diversity and mean per-capita function often 271 

exhibited a positive peak at intermediate ℓ values, a pattern particularly pronounced in the reef fish 272 

community datasets (Figure 4 f, g). Finally, there was a tendency towards a negative correlation 273 
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between log(diversity) and log(mean per-capita function) for larger, positive values of ℓ (when 274 

diversity becomes largely synonymous with abundance), though the strength of this relationship was 275 

variable. 276 

 277 

Discussion 278 

Diversities near richness (1 < ℓ < 2) often had strong positive correlations with ecosystem function 279 

(Figure 2), echoing a large body of research emphasizing the importance of richness in BEF 280 

relationships [3]. However, this was not a foregone conclusion, because most empirical BEF work does 281 

not consider other portions of the diversity spectrum [8], and because much of the theoretical and 282 

empirical work is grounded in closed communities where richness has a clear interpretation. We were 283 

surprised by the consistent performance of richness, because of three concerns we described in the 284 

introduction: first, observed richness is not a robust biodiversity measure in observational data; 285 

second, Hill diversities with high ℓ should better explain function in systems with highly variable total 286 

abundance; third, ℓ values that emphasize the probability of interspecific encounter (-1 ≤ ℓ < 1) might 287 

better explain function if species interactions are very important. The disconnect between observed 288 

and true richness is not, practically speaking, a resolvable problem and thus we cannot evaluate how 289 

much this first issue is affecting our results [25]. In the following paragraphs, we explore the latter two 290 

points, namely: how do Hill diversities near richness outperform Hill diversities with higher ℓ that 291 

better reflect abundance, and why we might have found such low explanatory power for Hill 292 

diversities that should capture the effects of (potentially positive) species interactions. Although all 293 

the information about relative abundances is contained in any continuous interval along the Hill 294 

diversity spectrum, at different values of ℓ, different aspects of the abundance distribution are 295 

emphasized. To better ground our discussion, we use an admittedly imprecise simplification, and 296 

refer to ℓ values as falling within the “inverse dominance range” (ℓ < 1), the “evenness emphasis 297 

range” (-1 ≤ ℓ < 1), the “rare emphasis range” (1 ≤ ℓ < 2, justification follows), or the “abundance 298 

emphasis range” (ℓ > 2).  299 

 300 

As ℓ values increase, empirical diversities values are increasingly dependent on total abundance, since 301 

the abundance of the rarest species is typically at the lower bound set by the detection threshold (for 302 

count data, one). Hill diversities in the “rare emphasis range,” like richness itself, are affected by 303 

abundance as well as diversity per se. This is reasonably viewed as a sampling nuisance [6,24]. But 304 
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viewed in another light, measures that combine abundance, relative abundance, and richness 305 

components could predict function well because, owing partly to their sampling properties, they 306 

describe salient biodiversity gradients. In fact, our results showed that ℓ values in the rare emphasis 307 

range  that, compared to richness, are relatively more sensitive to abundance tended to better explain 308 

function. Rare-emphasis Hill diversities increase with richness, abundance, and often also dominance. 309 

As a result, they might vary with the importance of sampling effects whereby higher-functioning 310 

(likely, highly abundant) species are more likely to occur in species-rich assemblages (a kind of 311 

selection effect) [34,50,51]. We found that rare-emphasis Hill diversities tended to explain function 312 

best, with 1 < ℓ < 2 performing better than richness, ℓ = 1, but because they still reflect compositional 313 

heterogeneity, also better than abundance alone (Figures 2-3). 314 

 315 

Hill diversities in the evenness emphasis range (-1 ≤ ℓ < 1) should capture the effects of species 316 

interactions by emphasizing the probability of interspecific encounter, but these diversities explained 317 

function poorly. This was partly unexpected because in several observational datasets, function 318 

increases with evenness [52–55], which increases Hill diversity for ℓ < 1 [56–58]. Additionally, in the 319 

evenness emphasis range, sample Hill diversities have relatively good statistical properties as 320 

estimators of true diversity, and asymptotic estimators [24] can further improve the situation, largely 321 

avoiding the robustness issues we highlight with species richness. Instead, the observed weak 322 

explanatory power of Hill diversities with ℓ values in the evenness emphasis range is because 323 

functions analyzed here are the product of two components, abundance and per-capita function, 324 

which each showed different responses to increasing ℓ. Abundance-diversity relationships often 325 

followed function-diversity correlations (compare Figure 3 with the top row of Figure 4). In other 326 

words, across the ℓ spectrum, Hill diversities had nearly the same relationship with abundance and 327 

with function, underlining the necessity of accounting for the role of total abundance in BEF research 328 

[59]. However, Hill diversities in the evenness emphasis range deviated from this pattern, instead 329 

exhibiting often strong, countervailing relationships with abundance and per-capita function (Figure 330 

4). This fits with previous BEF literature, which anticipates a variety of mechanisms linking evenness 331 

and ecosystem function, without a clear prediction for when the net result is positive or negative [60–332 

63].  333 

 334 
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The relationship between diversity and per-capita function differed from the diversity-abundance 335 

relationship, with correlation coefficients for per-capita function generally decreasing with increases 336 

in ℓ, but often showing a positive peak in the evenness emphasis range (Figure 4). Positive species 337 

interactions, including those that increase per-capita function, are expected to explain total function 338 

[51,64,65]. Our results partly support these expectations, as Hill diversities in the evenness emphasis 339 

range, which should track the probability of interspecific encounter, were positively associated with 340 

per-capita function, even as they tended to be negatively associated with abundance. As we increased 341 

ℓ, the correlation between Hill diversity and per-capita function disappeared near richness (ℓ = 1), also 342 

pushing against expectations that richness best captures function-relevant biodiversity gradients. In 343 

the rare emphasis and abundance emphasis ranges, we typically found a negative correlation 344 

between Hill diversity and per-capita function. Recent work highlighting the functional contribution of 345 

rare species to ecosystem function led us to suspect the opposite might occur [40,66–68]. The 346 

observed negative correlation likely reflects spatial constraints and/or fundamental tradeoffs 347 

between having many, smaller-bodied individuals versus fewer larger ones [69,70]. This scenario is 348 

particularly easy to imagine for trees crowding in fixed-area plots, which physically and energetically 349 

prohibit arbitrarily large numbers of the largest trees. Similar energetic and spatial constraints limit 350 

the number of very large fish that might be seen in a single dive. Thus, we suspect that one reason we 351 

saw a decline in the correlation between mean per-capita function and diversity with increasing ℓ in 352 

the fish and tree datasets is decreases in per-capita function due to crowding. 353 

 354 

Even as Hill diversities in the rare emphasis range most often explained total function best, Hill 355 

diversities with ℓ values in the abundance emphasis range also explained function well, and should 356 

not be discounted. Hill diversities in the abundance emphasis range were the best predictor of 357 

function in a substantial minority of datasets (Fig. 2), and for nearly all datasets were strong predictors 358 

of function (Fig. 3, far right of x-axes). This was expected because of a general link between higher 359 

abundance and higher function [38,59,71–74]. Even as Hill diversities in the “abundance emphasis” 360 

range related strongly to function, we also note that abundance (like evenness) can relate to Hill 361 

diversity across the full spectrum of ℓ values. For example, if high-abundance sites tend to be 362 

dominated by many individuals of one or a few species [49], Hill diversities that emphasize inverse 363 

dominance will decrease with abundance. Thus, we should not expect that strong effects of 364 

abundance on function are captured exclusively at high values of ℓ. 365 
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 366 

The explanatory power of Hill diversity changed nonlinearly with increases in ℓ, as multiple facets of 367 

community structure (e.g., richness, abundance, evenness) affect function simultaneously. If we had 368 

found a monotonic strengthening of BEF relationships with increasing ℓ, we would argue that Hill 369 

“diversities” with large positive scaling parameters were simply abundance metrics masquerading as 370 

measures of diversity. Instead, we found, across a variety of regions, taxa, and ecosystem functions, 371 

intermediate, positive ℓ values in the “rare emphasis” range tended to produce the strongest BEF 372 

relationships (Fig. 3). All Hill diversities with positive ℓ values (including richness) tend to increase with 373 

both abundance and richness, which we argue can be a useful property, especially for BEF research. 374 

Because the goal of summarizing species’ abundances with diversity metrics is to distill complex, 375 

multivariate information [17], this claim is not radical. In fact, Hill diversities that emphasize rare 376 

species more than richness does can reflect intuitive notions of diversity, which include both high 377 

density and high compositional variation [75]. Our study points to the need for further theoretical 378 

work to explicate the meaning of these seldom-used Hill diversities in the rare emphasis range, and 379 

their linkages to ecosystem function.  380 

 381 

By considering Hill diversities over a wide range of ℓ, we place ourselves at odds with the convention 382 

that Hill diversities should be considered only when ℓ ≤ 1 [6,16,17,48,76]. The most compelling 383 

argument for that restricted range of scaling parameters is presented by Patil and Taillie, who argued 384 

that diversity should not decrease when abundance is shifted from more to less abundant species, 385 

including to species with zero abundance, a variation on Dalton’s “principle of transfers” [17,77]. This 386 

diversity property does not hold for Hill diversity when ℓ >1, which has species richness as its 387 

minimum, occurring in the perfectly even community, and increases (given richness and abundance) 388 

as some species get progressively rarer. A more pragmatic argument comes from Chao et al., who 389 

noted that estimating the relative abundance of rare species is an increasing problem for diversity 390 

measures as ℓ increases; they therefore suggest using only more estimable Hill diversities with ℓ ≤1 [6]. 391 

However, theoretical work suggests that even richness (ℓ = 1) is poorly estimated [24,25], and by this 392 

logic should not be used either. Finally, and most generally, diversity measures have traditionally 393 

been considered separate from abundance/density measures (but see [78,79]), whereas with 394 

increasing ℓ values, observed diversity and observed abundance tend to be more strongly correlated 395 

(and in fact approach a correlation of one in our datasets). Despite these arguments, our results show 396 
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that Hill diversities with ℓ > 1 are meaningful ecological diversity measures, at least in the sense that 397 

they convey more information about function than do more widely-used Hill numbers. Choosing to 398 

exclude these Hill diversities might be desirable for some conceptualizations of diversity, but we are 399 

opening the narrower question of which Hill diversities—with their variable emphasis on richness, 400 

abundance, evenness, and dominance—best explain ecosystem function. In this pursuit, allowing 401 

diversity metrics to highlight absolute abundance is valuable.  402 

 403 

Our correlational analyses of observational data do not consider confounding variables, which may 404 

obscure links between biodiversity and ecosystem function, across the Hill diversity spectrum. 405 

Experimental and statistical approaches to better account for environmental drivers of diversity 406 

and/or function and more rigorously trace causal pathways (e.g., [35,80]) will be useful in validating 407 

and extending our findings [81]. One obvious effect of ignoring confounding variables is that the BEF 408 

correlations we found are likely to be low, as the confounding variables add noise that is not 409 

accounted for. Future work linking environmental gradients and other confounding variables to 410 

particular regions of the Hill diversity spectrum (e.g., regions emphasizing inverse dominance, 411 

evenness, rare species, or total abundance) may also clarify mechanisms underlying BEF 412 

relationships.  413 

 414 

As global changes lead to shifting species abundances, ecologists must continue to describe and 415 

predict how these shifts impact ecosystems and the way they function. Yet, understanding the 416 

separate and combined roles of total and relative abundance in mediating ecosystem function 417 

remains a difficult challenge, in large part because total abundance is inextricably linked to diversity 418 

measures. It is mathematically linked for large, positive ℓ values. It is practically constrained by 419 

sampling effects for ℓ closer to 1 (i.e., near species richness). As ℓ becomes negative, Hill diversities 420 

may lose their dependence on total abundance [24]. However, in the majority of community datasets, 421 

we saw at least weak negative correlations between negative-ℓ Hill diversities and observed 422 

abundances, likely due to increasing dominance in more abundant systems [49]. Overall, this suggests 423 

that in observational contexts, simple partitioning of abundance and diversity effects may not be 424 

tractable, at least not in a satisfying manner [50,82]. Since no single-best diversity measure is likely to 425 

emerge for all BEF studies, we encourage researchers to be open-minded towards Hill diversities 426 
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across a wide spectrum of ℓ values and their potential links to mechanisms underlying BEF 427 

relationships. 428 
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 639 
 640 
 641 
 642 

Table 1. To learn how biodiversity-ecosystem function correlations are affected by different Hill 643 
diversity scaling factors, we gathered published, observational community datasets on three 644 
ecosystem functions. These were subdivided into a total of 39 community datasets, each including 645 
observations of species’ identities, abundances, and functions across replicated sites.  646 

Ecosystem 
function Citation Datasets Replication 

Max extent 
(km) 

Rate of wild 
bee pollen 
deposition 

Genung et al. 
2022 

Landscape array of 3 
plant species 

Each plant species 
present at 25 sites 

35 

Fish biomass 
Lefcheck et al. 
2021 

32 globally distributed 
ecoregions (16 temperate, 
16 tropical) 

11-186 sites 
(median 59) 17 - 4,677 

Above-ground 
carbon storage 

Condit et al. 2000, 
Cavanaugh et al. 
2014 

Tree species ID and 
estimated biomass at four 
globally distributed 
tropical forests 

50 1-Ha subplots 
from the 50-Ha BCI 
census; sets of six 
1-Ha plots in three 
tropical regions. 

1 (Condit et 
al.); 32-681 
(Cavanaugh 
et al.) 
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 668 
 669 
Figure 1. Two hypothetical communities with (a) different species abundance distributions have 670 
(b) different diversity profiles. At large negative ℓ values, each diversity profile converges on the 671 
inverse proportional abundance of the one most abundant species in the assemblage (inverse 672 
dominance). As ℓ values are more positive, each diversity profile converges on the inverse 673 
proportional abundance of the one least abundant species in the assemblage (equal to total 674 
abundance when the least abundant species is a singleton). Because singletons are ubiquitous in 675 
observational data, sample Hill diversities converge on observed abundance with increasingly large, 676 
positive values of ℓ. In the example, the red community is more even and more abundant, so its 677 
diversity is higher compared to the blue community at both ends of the diversity spectrum. However, 678 
the blue community has more species, and therefore is more diverse around richness (ℓ = 1, solid 679 
vertical). Other commonly used diversities are inverse Simpson (dotted, ℓ = -1) and exponentiated 680 
Shannon (dashed, ℓ = 0). In the diversity literature, it has been less common to explore the right side of 681 
this spectrum (i.e., ℓ > 1) 682 
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 702 
 703 

 704 
Figure 2. Across 39 observed biodiversity-ecosystem function (BEF) correlations calculated using 705 
a wide range of diversity scaling factors, the BEF relationships with the highest R2 were typically 706 
found using diversities near richness (vertical solid line; modal ℓ = 1.5). The highest BEF R2 value 707 
for a community dataset was rarely found using diversities that emphasize the relative abundance of 708 
common species, including exponentiated Shannon (dashed line) and inverse Simpson (dotted line). 709 
Correlations were calculated between log(diversity) and log(ecosystem function) at a site (total 710 
above-ground carbon in tropical forest plots, rate of pollen grain deposition by wild bees, or total 711 
biomass of reef fish encountered in fixed-effort dive surveys in temperate and tropical regions).  712 
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 724 
 725 
Figure 3. Biodiversity-ecosystem function (BEF) correlations across observed communities in a 726 
study system vary in magnitude and direction, depending on which scaling factor “ℓ” is used for 727 
calculating species’ diversity. Ecosystem services considered here are (a) rate of pollen grain 728 
deposition on one of three flower species by wild bees; total biomass of reef fish encountered in fixed-729 
effort dive surveys in (b) temperate and (b) tropical global regions; and (d) total above-ground carbon 730 
in tropical forest plots. Correlations are between logged total function at each site, and logged species 731 
diversity at a range of ℓ values (at 0.05 intervals) emphasizing the relative abundance of common 732 
species’ (negative ℓ values) or rare species (positive ℓ values). Vertical lines identify correlations at 733 
commonly used diversities: inverse Simpson (dotted), exponential Shannon (dashed), and richness 734 
(solid). Colors visually distinguish different community datasets. 735 
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 736 
 737 
Figure 4. Biodiversity-ecosystem function (BEF) correlation in observational data (Figure 3) can 738 
be explained by correlation between total abundance and diversity (first row), correlation 739 
between mean per-capita function and diversity (second row), and interactions between these 740 
two factors (intractable, not shown). With a few exceptions, the abundance-diversity correlations 741 
roughly match the BEF correlation across the range of ℓ values used to calculate species diversities, 742 
while per-capita function-diversity correlations show countervailing trends in magnitude and 743 
direction. Compare (a, e) wild bee pollination, reef fish biomass in (b, f) temperate and (c, g) tropical 744 
regions, and (d, h) tropical forest above-ground biomass with corresponding panels in Figure 3. 745 
Vertical lines identify correlations at commonly used diversities: inverse Simpson (dotted), 746 
exponential Shannon (dashed), and richness (solid). Colors visually distinguish different community 747 
datasets. 748 
 749 
 750 
 751 
 752 
 753 

a

e

b

f

c

g

d

h

bee pollination reef fish *temperate reef fish *tropical tree carbon
ab

un
da

nc
e 

co
rr
el
at
io
n

pe
r-

ca
pi

ta
 fu

nc
tio

n 
co
rr
el
at
io
n

-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

Hill diversity scaling factor, "ℓ"



 27 

 754 
Figure S1. Community datasets (line color) differed in both the shapes of the diversity profiles 755 
(Hill diversity vs. ℓ) and the degree to which diversity profiles differed between sites. For 756 
example, the grey-blue tree_carbon sites were all 1-Ha subplots from the contiguous BCI 50-Ha forest 757 
plot, and diversity profiles were very similar between subplots; by contrast the yellow bee_pollination 758 
sites (Floral visitors of Polemonium reptans) had variable structure with wide variety in richness (ℓ = 1, 759 
vertical solid lines), inverse dominance (large negative ℓ), and abundance (large positive ℓ). Each curve 760 
is the diversity profile for a single site; colors indicate a community dataset (set of sites within a region 761 
at which a single function was measured).  762 
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