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ABSTRACT
Aim: Conservationists and managers must direct resources and enact measures to protect species, despite uncertainty about 
their present status. One approach to covering the data gap is borrowing information from data-rich species or populations to 
guide decisions about data-poor ones via machine learning. Recent efforts demonstrated proof-of-concept at the global scale, 
leaving unclear whether similar approaches are feasible at the local and regional scales at which conservation actions most typi-
cally occur. To address this gap, we tested a global-scale predictive approach at a regional scale, using two groups of taxa.
Location: State of Maryland, USA.
Taxa: Vascular land plants and lepidopterans.
Methods: Using publicly available occurrence and biogeographic data, we trained random forest classifiers to predict the state-
level conservation status of species in each of the two focal taxa. We assessed model performance with cross-validation, and 
explored trends in the predictions.
Results: Our models had strong discriminatory ability, accurately predicting status for species with existing status assessments. 
They predict that the northwestern part of Maryland, USA, which overlaps the Appalachian Mountains, harbours a higher con-
centration of unassessed, but likely threatened plants and lepidopterans. Our predictions track known biogeographic patterns, 
and unassessed species predicted as most likely threatened in Maryland were often recognised as also needing conservation in 
nearby jurisdictions, providing external validation to our results.
Main Conclusions: We demonstrate that a modelling approach developed for global analysis can be downscaled and credible 
when applied at a regional scale that is smaller than typical species ranges. We identified select unassessed plant and lepidop-
teran species, and the western, montane region of Maryland as priority targets for additional monitoring, assessment and conser-
vation. By rapidly aggregating disparate data and integrating information across taxa, models like those we used can complement 
traditional assessment tools and assist in prioritisation for formal assessments, as well as protection.
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1   |   Introduction

Conservationists and natural resource managers must direct 
resources and enact measures to assess—and ultimately pro-
tect—species and populations, despite uncertainty about their 
occurrence patterns, life history, demographic trends or the spe-
cific threats they face. One stepping-stone approach to bridging 
the data gap is borrowing information from data-rich species 
or populations to guide decision-making about data-poor ones 
using predictive modelling frameworks (Callaghan, Nakagawa, 
and Cornwell 2021; Free et al. 2020; Pelletier et al. 2018; Zizka, 
Andermann, and Silvestro  2022). Increasingly, publicly avail-
able datasets that aggregate observations (Heberling et al. 2021) 
enable formulating and fitting predictive models to guide con-
servation and natural resource management (Bastin et al. 2019; 
Caetano et al. 2022; Callaghan, Nakagawa, and Cornwell 2021; 
Panter et al. 2020; Pelletier et al. 2018; Zizka, Andermann, and 
Silvestro  2022). The predictions from such models might be 
used to support conservation actions, and guide prioritisation 
for resource-intensive status assessments (Pelletier et al. 2018). 
On the latter, national and subnational jurisdictions generate 
taxon-specific management plans triggered by formal status as-
sessments (e.g. via National and State-level Endangered Species 
Acts in the United States (Department of the Interior  1973; 
“Nongame and endangered species conservation act,” 2022)). In 
this context, status predictions from predictive models such as 
those mentioned above are not sufficient to trigger protections, 
but might undergird the listing process, by assisting with moni-
toring and assessment prioritisation in a resource-limited world.

Several knowledge gaps or ‘shortfalls’ prevent strategic species 
protection (Cardoso et al. 2011b; Mokany and Ferrier 2011). Here, 
we focus on the ‘Rabinowitzian’ shortfall, that is, the gap between 
observing species' occurrences, and using that information to 
evaluate their conservation risks (Cardoso et al. 2011a; Crisfield, 
Blanchet, and Gravel 2022; Isbell et al. 2023; Rabinowitz 1981). 
Models that use existing data can identify under-recognised 
patterns of threat and endangerment (Regan et  al.  2008), and 
enable efficient allocation of monitoring, assessment and protec-
tion resources (Hochkirch et al. 2021). For these goals, statistical 
learning tools that aggregate disparate data streams can recog-
nise meaningful patterns that might escape notice in more gran-
ular analyses. Such tools were tested by Pelletier et al.  (2018), 
who used only a handful of spatial and climatic covariates, and 
were able to predict the conservation status of unassessed land 
plants. They identified taxa likely to meet IUCN Red List cri-
teria, as well as previously unrecognised hotspot regions that 
likely harbour high concentrations of threatened but unassessed 
taxa. The authors anticipated that their approach could serve 
conservation needs at smaller spatial scales, which would make 
their method directly applicable at the scales at which most 
conservation actions take place. The outputs from their mod-
els, which include predicted likelihood of threat for unassessed 
taxa, maps illustrating the occurrence patterns of species likely 
to be relatively threatened or secure, and a suite of covariates as-
sociated with the occurrence patterns of threatened species, pro-
vide decision makers with clues about the conservation needs of 
poorly known species. Because it is insufficient to focus conser-
vation efforts solely on the needs of previously assessed species 
(Baker et  al.  2019; Gallagher et  al.  2023), these kinds of clues 
provide a starting place to expand the purview to unassessed 

taxa (Hochkirch et  al.  2021). Furthermore, because Pelletier 
et al.'s (2018) predictive modelling approach uses existing data 
and can be iterated as additional information or priorities dic-
tate, it is amenable to initial-path-setting decisions (e.g. whom 
to hire, where to monitor, which experts to engage) at local and 
regional scales (Pressey et al. 2013).

Although the approach Pelletier et al. (2018) used can be tech-
nically implemented at nearly any scale, downscaling entails 
radical shifts in data availability, quality and biogeographic 
representation that could improve or erode the utility of the ap-
proach. At smaller, regional scales, data quality may be more 
similar between assessed and unassessed taxa, which should 
improve predictions. Additionally, at smaller scales, complete 
datasets containing a wider variety of potentially appropri-
ate covariates (e.g. land use and its history) may be available. 
Nevertheless, at smaller spatial scales, records of species' oc-
currences are unlikely to cover species' whole ranges, and the 
number of species in a smaller region is also likely to be smaller, 
potentially limiting statistical power. Additionally, it is un-
known whether the approach is extensible to other taxa beyond 
plants without substantial modification. If the same suites of 
geographic covariates can predict conservation status of dispa-
rate taxa, this predictive approach has high promise to assist in 
a variety of conservation contexts.

Here, we downscale the approach Pelletier et al. (2018) took to 
predict conservation statuses, applying similar methods to vas-
cular land plants (the focal higher taxon in Pelletier et al. (2018), 
hereafter ‘plants’) and lepidopterans (a new focal group) within a 
sub-national management region (the State of Maryland, USA). 
We selected these two taxa because the State of Maryland main-
tains a rare, threatened and endangered list for each (Maryland 
Natural Heritage Program 2021a, 2021b), and the ecology and 
conservation needs of these two taxa differ (Isbell et al. 2023; 
Wagner et al. 2021). We asked whether, despite differences in the 
quality and quantity of data available, as well as the ecology of 
the taxa upon which predictions are made, a similar predictive 
modelling approach can help cover the Rabinowitzian shortfall, 
and guide conservation decisions at smaller, sub-national scales. 
We conducted this study as a test-of concept, relying on data-
sets that were publicly available and could be used with min-
imal processing. In discussing our results, we evaluate model 
performance and prediction credibility, and then explore our 
predictions. We identify species that are likely threatened in the 
State of Maryland, USA, and regions within the State that are 
likely to harbour a high density of threatened, unassessed spe-
cies. Finally, we use our case studies to discuss the promises and 
potential pitfalls of using similar predictive modelling tools for 
conservation prioritisation at regional and local scales.

2   |   Materials and Methods

2.1   |   Method Overview

To predict the conservation status of lepidopterans and plants 
in the state of Maryland, we obtained publicly available spe-
cies occurrence and spatial data. We used data for all assessed 
species to build random forest classifiers, tuning hyperparame-
ters and evaluating model discriminatory ability and expected 
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generalisation error through nested cross-validation. Then, for 
each taxon group (i.e. lepidopterans and plants), we fit a final 
model that was trained on all assessed species, and used these 
to predict conservation status for all unassessed species known 
to occur within the state. We mapped predictions to visually 
screen for spatial patterns, and then conducted a limited litera-
ture search to contextualise status predictions with independent 
lines of evidence. In the following sections, we provide details 
on the data we used, how we constructed and assessed models, 
the ways we generated and visualised predictions, and how we 
used independent lines of evidence to corroborate predictions.

2.2   |   Data

2.2.1   |   Plant and Lepidopteran Records

We obtained observations of plants and lepidopterans from the 
State of Maryland from 2001 to 2023 from GBIF (Appendix S2), 
irrespective of life stage (GBIF.org  2024). The timeframe 
matches that for the spatial covariates (see next section). We 
filtered the occurrence dataset to include only records asso-
ciated with valid species observed in the wild, as discussed 
below. We assigned each species to a conservation status cate-
gory, based on Maryland's State-level rankings, as recorded in 
NatureServe (NatureServe  2023). In order to do this, we first 
harmonised the taxonomies used by NatureServe and GBIF 
with programmatic tools from the R Packages rgbif, natserv and 
taxize (Chamberlain  2020; Chamberlain et  al.  2022a, 2022b), 
and some manual curation, and then merged the NatureServe 
conservation status ranks with the occurrence data based on the 
consensus species identification. Because relatively few plants, 
butterflies or moths had State conservation status in Maryland, 
we grouped their State conservation categories into three groups 
as follows: ‘secure’ taxa were all those categorised as S4 or S5, 
‘threatened’ taxa were all those categorised as S1, S2, S3, SH or 
SX, taxa categorised as SNA were removed, and all other taxa 
were considered unranked. To restrict our analysis to only 
species considered native to the State, we also filtered records 
based on the national and subnational exotic/native fields from 
NatureServe, and subsequently, for plants, also filtered them 
based on a recent Maryland flora (Knapp and Naczi  2020). 
Three threatened, and 334 unranked lepidopteran species, and 
91 threatened, 12 secure, and 59 unranked plant species were 
filtered out because they were represented by only a single oc-
currence location. Overall, our filtered dataset contained re-
cords for, respectively, 30, 90 and 1450 threatened, secure, and 
unranked lepidopterans, and 312, 134 and 952 threatened, se-
cure and unranked plant species. The 1570 lepidopteran spe-
cies were represented by a total of 128,245 records; 1398 plant 
species were represented by 192,103 records. Additional species 
data, such as range characteristics or biological traits, are not 
available across all species in the study and therefore were not 
included as features in model construction.

2.2.2   |   Environmental Variables

For each location record of a valid native species, we extracted 
latitude, longitude and a suite of associated spatial variables. 
We considered spatial datasets that were complete across the 

study region, publicly available and might plausibly be associ-
ated with species threat status. We tended to keep all variables 
from all datasets we could obtain since on the one hand, this was 
unlikely to worsen our predictions, as Random Forest models 
built on meaningful predictors tend to be robust to additional 
variables (Hastie, Tibshirani, and Friedman 2017). On the other 
hand, doing so allowed us to evaluate the performance of this 
modelling approach in a generic context (i.e. predictions for a 
variety of taxa are all based on the same covariates). Different 
spatial variables were available at different resolutions, and for 
each, we used the finest resolution available, extracting variable 
values at the coordinates of each occurrence record. In total, we 
included 69 spatial variables.

We extracted current and historic landcover, and indices of 
landcover change, from the National Land Cover Dataset (J. 
Wickham et  al.  2021), which includes 30 m × 30 m landcover 
data at 5-year intervals from 2001 to 2016. We anticipated that 
these variables might be associated with threat per se, as well 
as different geomorphology. We also extracted interpolated cli-
mate data from the expanded CHELSA dataset, which includes 
19 variables that summarise estimated daily, monthly and an-
nual temperature and precipitation (bioclim), and an additional 
50 variables derived from physical data such as irradiance, 
pressure and humidity, as well as their relationships to biolog-
ical tolerance ranges (e.g. growing season length estimates) at 
the resolution of 30 × 30 arc-s (Brun et al. 2022). Additionally, 
for each occurrence record, we extracted the estimated slope 
(at roughly 100 m × 100 m resolution) from the 1-m Statewide 
Slope layer (Eastern Shore Regional GIS Cooperative 2021). We 
hypothesised that these variables might help distinguish geo-
morphology and microclimates within the study region, thereby 
enabling models to recognise unique niches and habitat types.

Although we gathered spatial data at the occurrence level, we fit 
models at the species level. To create the species-level datasets, 
we summarised each environmental variable across all occur-
rences of a species to a pair of summary statistics: for continu-
ous variables we recorded the mean and standard deviation, and 
for categorical variables we recorded the modal value and the 
number of unique levels observed for the given species. In addi-
tion, for each species, we recorded the minimum and maximum 
latitude and longitude of their records. Variables with only a 
single value or missing values prevented model fitting and were 
thus dropped from the datasets for each group of organisms. To 
serve as a sort of null model for variable importance, we also 
included a random continuous variable as a predictor in each 
model. Models were built using these 153 summarised species-
level predictors.

2.3   |   Model Construction and Evaluation

We divided the dataset into a training dataset, comprised of 
all species within the categories ‘threatened’ or ‘secure’, and a 
prediction dataset, comprised of all unranked species. In order 
to tune hyperparameters and evaluate model performance, 
while retaining as much training data as possible, we used 
nested repeated 10 × 10-fold cross-validation. To do this, we 
created 10 × 10 outer folds of the training dataset, and on each 
outer fold, trained a random forest classifier using 10 × 10-fold 
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cross-validation, using the R packages caret and randomFor-
est (Kuhn et al. 2022; Liaw et al. 2022). On the inner folds, we 
conducted a grid search over the hyperparameter ‘mtry’, which 
controls the number of features available to use for splitting the 
data at each node, and has been shown among the random for-
est hyperparameters to substantively affect model performance 
(Hastie, Tibshirani, and Friedman  2017; Probst, Wright, and 
Boulesteix  2019). We left the other hyperparameters at their 
default values, as these are typically considered adequate for 
model construction (Probst, Wright, and Boulesteix  2019). We 
used the area under the receiver-operating characteristic curve 
(AUROC) as our measure of performance in parameter tuning, 
as this measure emphasises model discriminatory ability (Ling, 
Huang, and Zhang 2003), rather than accuracy per se. This per-
formance target should lead to models that can distinguish lev-
els of threat (i.e. that rank species well), but does not hinge on a 
single choice about the costs of misclassifying threatened vs. rel-
atively secure species. Although the Random Forest algorithm 
enables less computationally intensive model assessment using 
out-of-bag errors, here we used traditional cross-validation, 
which would be applicable to any model fitting algorithm (Kuhn 
et al. 2022).

For each of the 100 outer folds, we fit a ‘final model’ with the 
entire dataset, save the held-out fold, based on the selected hy-
perparameters, and used this model to make predictions on the 
held-out fold. Using random forest votes as a measure of class 
probability, we computed AUROC, and to evaluate model per-
formance on unseen data, we computed the mean and standard 
deviation of the 100 AUROC values computed on these 100 outer 
folds. In addition, we recorded the mean and standard deviation 
in AUROC from the inner, tuning folds, as large differences be-
tween AUROC from the inner and outer folds could indicate a 
lack of stability in model performance, or a tendency to overfit 
the training data.

After the extensive cross-validation described above, we 
re-trained each model (i.e. one for plants and one for lep-
idopterans) on the entire training dataset, again tuning the 
hyper-parameter ‘mtry’ with 10x repeated 10-fold cross-
validation. We used the ‘final model’ for each taxon group 
from this step to make all predictions on unclassified spe-
cies. The performance estimates we obtained from previous 
cross-validation provide the expected performance of these 
final models on unseen data, with two major caveats. First, 
additional data were used to train the final models, which are 
therefore not exactly equivalent to the models built on sub-
sets of the same data. Second, we use these final models for 
predicting conservation status for unassessed, rather than as-
sessed species. For unassessed species, we can only evaluate 
model performance indirectly, by comparing predictions with 
non-definitive external data (see below).

2.3.1   |   Optimal Threshold

Depending on the application, greater precaution may be war-
ranted for misclassification errors for either threatened or rela-
tively secure species, implying different ideal thresholds for the 
share of random forest ‘votes’ required to classify a species into 
a certain category. As the threshold for classifying a species as 

threatened increases, fewer species will be classified as threat-
ened, and the chance of mis-classifying a species that is, in fact, 
relatively secure as ‘threatened’ falls, while the chance of mis-
classifying a threatened species as ‘secure’ rises. In evaluating 
model performance, we focused on discriminatory ability (using 
AUROC, which effectively considers all possible dichotomous 
thresholds (Hand 2009)), and did not assess accuracy (i.e. the av-
erage rate of prediction errors) (Ling, Huang, and Zhang 2003). 
However, in order to visualise predictions and more clearly 
discuss our results, we selected a dichotomous classification 
threshold, acknowledging that across different applications, 
other thresholds might be preferable (Walker et  al.  2020). For 
each taxon group, we selected the threshold that maximised 
the geometric mean of sensitivity and specificity on out-of-fold 
training data using the function performance from the R pack-
age ROCR (Tobias, Sander, and Beerenwinkel 2022).

2.3.2   |   Visualising Predictions

We created state maps using the R packages raster, tigris, sf, rna-
turalearth and ggplot2 (Etten et al. 2023; Massicotte et al. 2023; 
Pebesma et  al.  2023; Wickham et  al.  2022) to visualise model 
predictions and highlight areas in which many records of puta-
tively threatened species were found. To visualise model predic-
tions, we plotted each occurrence record using a colour palette 
representing the random forest votes for ‘threatened’ given to the 
taxon. To better visualise concentrations of threatened species, 
we divided the study region into 8 × 8 km grid cells, and each cell 
value represented the number or proportion of species classified 
as threatened according to a threshold specific to each higher 
taxon (see ‘Section 2.3.1’, above). Such maps can be used to pri-
oritise locations for additional survey and assessment resources, 
or to prioritise locations for conservation funding, as locations 
with a high concentration of putatively threatened species may 
both yield valuable data for evaluating species' conservation sta-
tuses, and warrant precautionary protection.

2.3.3   |   Assessing Predictors

Random forest models are poorly suited to inference on causal 
relationships, but it is possible to diagnose which predictors 
most strongly drive model predictions. Towards this end, we 
measured ‘MDA’ using the R package randomForest (Bénard, Da 
Veiga, and Scornet 2022; Breiman 2001; Ishwaran 2007; Liaw 
et al. 2022). MDA approximates the degree to which each vari-
able improves the predictive accuracy of trees within the ran-
dom forest. We ranked all variables based on their MDA scores 
within each cross-validation run such that the variable with the 
greatest MDA score in a particular run would be ranked first. 
We then plotted the distribution of MDA ranks across cross-
validation runs for the top five predictors for each taxon group. 
Variables exhibiting consistent, low MDA ranks had relatively 
strong and/or clear associations with conservation status.

2.3.4   |   Literature Search

Although we cannot directly test whether predictions on unas-
sessed species are correct without formal status assessments, 
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we can use external data sources as additional lines of evi-
dence to corroborate or challenge our predictions. To do 
this, we gathered external data for the 15 (or more, in case 
of ties) species for each taxon group that received the most 
and fewest votes for the category ‘threatened’. These species, 
for which the models had the strongest predictions, provide 
an opportunity to screen for inconsistencies that might sug-
gest incorrect predictions, despite the fact that information 
on the conservation statuses of unassessed species is, by 
definition, lacking. For each of these species, we first asked 
if the species had been recognised as threatened in nearby 
jurisdictions by querying the species name on NatureServe 
(NatureServe. 2023) (Appendix S2) for subnational status as-
signments in Eastern North America (i.e. the continental USA 
east of the Mississippi, and the Canadian provinces of Ontario, 
Québec, New Brunswick, Nova Scotia, Prince Edward Island 
and tribal/first nations lands within this region). A match be-
tween our status prediction and the recorded status in nearby 
locations supports our prediction. Second, we also examined 
contemporary geographic range data for the same top spe-
cies. To do this, we visualised recent occurrence records in 
North America for each species using iNaturalist (iNaturalist 
Network 2022). For species predicted as ‘threatened’ (and the 
opposite for species predicted as ‘secure’), if it appeared that 
species current range limits may be in or near Maryland, we 
considered our predictions further supported.

3   |   Results

3.1   |   Model Construction and Performance

On average, the discriminatory abilities were high for models for 
both taxon groups (mean AUROC plants = 0.933, sd = 0.039; lep-
idopterans = 0.902, sd = 0.084; Figure 1), with both models gen-
erally outputting higher ‘threatened’ probabilities to threatened 
species than to secure ones (Figure 2). We did not detect large 
differences in AUROC between the inner and outer folds for lep-
idoptera, but did for plants. This difference indicates less stable 
models for plants (i.e. model performance may be very sensitive 
to the inclusion of particular training data). On the other hand, 
hyperparameter selection was highly variable for lepidopteran 
and somewhat more consistent for plant models (mean mtry for 
plant models = 6.9, sd = 14.0, final model mtry = 2; lepidopter-
ans = 61.0, sd = 60.0, final = 140). When we set a vote threshold 
for classification that maximised model sensitivity and specific-
ity, the optimal vote threshold differed between the two taxon 
groups: 0.66 for plants and 0.36 for lepidopterans. At these 
thresholds, both models accurately classify previously assessed 
species.

3.2   |   Predictions for Unassessed Species

At the selected vote thresholds, our classifiers predicted 52% 
(493/952) of unassessed plant species and 44% (639/1450) of 
unassessed lepidopteran species as threatened in Maryland 
(Supporting Information S1). The most predictive variables dif-
fered between plants and lepidopterans (Figure 3). For plants, 
the top variables were often associated with variability, such as 
that in land use change index, in daily mean air temperature 

both during the coldest month and during the growing season, 
and in daily temperature ranges. The mean first day over 10°C 
was also an important predictor for plant conservation status. 
For lepidopterans, variables related to coldest temperatures 
tended to place among the top variables. These included the 
mean first day of year above 5°C, and the latitudes and longi-
tudes of Maryland records.

Model predictions highlighted the northwesternmost part of 
the state as a possible conservation hotspot for both plants and 
lepidopterans (Figure  4). Although unassessed species pre-
dicted as ‘threatened’ were found throughout the state, their 
occurrence records appear concentrated in the northwestern 
half of Maryland (Figure 4). Furthermore, the mean per-cell 
predicted threat probabilities showed a strong east–west gra-
dient, with the highest mean threat probabilities in the west-
ernmost parts of Maryland (Figure S1). For both taxa, a higher 
number, but not high proportion, of species were predicted as 
‘threatened’ in the Piedmont region in the centre of the state 
(Figure 4, Figure S1).

When corroborating predictions with external data, we found 
that species with the highest ‘threatened’ probabilities had 
been assigned a status we considered ‘threatened’ in at least 
one jurisdiction in eastern North America (20/30); species 
with low threatened probabilities were rarely unassessed in 
eastern North America (3/93), and were assigned ‘threatened’ 
statuses at lower rates (33/93). Recent occurrence patterns for 
many of the species strongly predicted as ‘threatened’ suggest 
they have a range primarily north of Maryland, often with 
southern range extensions along the Appalachian Mountains 
(Table S1). Lepidopterans receiving the highest ‘secure’ prob-
abilities were less frequently assigned statuses we considered 
‘threatened’ in nearby jurisdictions (19/78). The case was 

FIGURE 1    |    Discriminatory ability of random forest models was 
high for both plants (a) and lepidopterans (b). Histograms show distri-
bution of area under the receiver operating curve (AUROC) values on 
unseen data in 10× repeated 10-fold cross-validation. In each panel, 
mean AUROC is shown with a red vertical line; dashed vertical line 
indicates the expected performance of a model making random guesses 
(AUROC of 0.50).
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different for plants, where 14/15 species had been assigned a 
‘threatened’ status elsewhere in eastern North America, pri-
marily to the west and north of Maryland. We note that many 
of these plant species had also been assessed as relatively 
secure in coastal states from Delaware southwards, where 
climates tend to be warmer and where their ranges primar-
ily extend. These patterns also support, to some degree, our 
predictions.

4   |   Discussion

Here, we showed that random forest models can help cover the 
Rabinowitzian shortfall, using the biogeographic information 
about species contained in their occurrence records to evalu-
ate conservation status. We showed that this machine learning 
method, originally developed for global analysis, applies at re-
gional scales (here, the State of Maryland) and to a variety of 
taxa. We identified unassessed plant and lepidopteran species 
that are likely to be threatened and thus could be given high 
conservation priority. Our prediction mapping highlighted the 
western, montane section of the state as a potential hotspot for 
species monitoring, assessment and protection. In the following 
sections, we discuss the implications of our results, explore the 
biogeographic trends recognised by our models, and describe 
how our study supports the use of similar methods to cover 
Rabinowitzian shortfalls in additional contexts.

4.1   |   Publicly Available Data and Simple Predictive 
Models Identify Regional-Scale Conservation 
Priorities

Several studies have demonstrated proof-of-concept for predic-
tive modelling approaches for monitoring or conservation pri-
oritisation for plant and animal groups, but at continental or 
global scales (Bastin et  al.  2019; Parsons et  al.  2022; Pelletier 
et  al.  2018; Wieringa  2022; Zhang, Campomizzi, and Lebrun-
Southcott 2022; Zizka, Andermann, and Silvestro 2022). Because 
decisions about monitoring, research and protection are often 
made at smaller spatial scales, before recommending adoption 
of these tools for conservation practice, it is crucial to determine 
if they still provide useful predictions at those scales (McIntosh 
et al. 2018; Meyer and Pebesma 2021; Pressey et al. 2013; Wyborn 
and Evans 2021), as we have done here.

We anticipated several obstacles to prediction would be larger 
at the smaller geographical scale considered here, but also 
recognised mitigating advantages. Formally similar models 
trained on global vs. regional datasets may reflect fundamen-
tally different biogeographic processes (e.g. continental vs. 
local), and are built on data of different quality and quantity. 
Disadvantages at regional scales include the fact that occur-
rence records are unlikely to cover complete species' ranges, 
thereby obscuring their ecological preferences (Lee-Yaw 
et al. 2022; Phillips et al. 2009). Another limitation is that the 

FIGURE 2    |    Random forest predictions (votes) from final models on occurrence (point) records of assessed (a–d) and unassessed (e, f) species. 
Models distinguished threatened and relatively secure species in the training dataset (lighter points in panels a and b, darker in c and d), and identify 
a concentration of putatively threatened, unassessed species in Western Maryland (trend towards darker points in western portion of maps in e, f). 
Colour gradient indicates predicted values.
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variation of environmental covariates used is likely smaller, 
theoretically limiting the strength of any ecological signals 
and increasing the chance that model predictions would be 
based on noise (Garcia-Rosello et al. 2023; Hughes et al. 2021). 
Finally, and most simply, the number of taxa available on 
which to train models at regional scales is likely to be much 
smaller than at global scales, further reducing the chance that 
predictive models reflect generally applicable trends.

Mitigating some of these concerns, at smaller scales, geo-
graphic datasets may have higher resolution and higher qual-
ity, or be more consistently available across species or space, 
which should improve the performance of resulting models. 
In this vein, we used complete, publicly-accessible, high-
resolution covariates at the regional scale, such as land use, 
land cover and their history, as well as slope—information 
that may be less readily available at much larger scales (Gogol-
Prokurat 2011). Though subject to many of the environmental 
and spatial gaps and biases typical among large biodiversity 
data (Bachman, Nic Lughadha, and Rivers  2018; Gallagher 
et  al.  2023; Kitzes and Shirley  2016; Newbold  2010), occur-
rence datasets from our study region benefit from high densi-
ties of monetary wealth, human population and roads, as well 
as proximity to flagship natural history collections and older 

research universities. These advantages may, in this study, 
have counterbalanced the limitations of the smaller spatial 
scale discussed above.

Overall, even as our regional datasets differ from those used in 
larger-scale predictive models, they appear to contain sufficient 
information to generate credible predictions. First, we found 
evidence that the models were using stable—and perhaps ro-
bust—signals to generate predictions. Across cross-validation 
runs of models for the same higher taxon, the same top predic-
tors were frequently identified, implying sample sizes and signal 
strengths were adequate within our regional-scale data. At the 
same time, we note some signs of model instability: performance 
differences in the inner and outer cross-validation nesting levels 
for plants, as well as high variability in hyperparameter selec-
tion especially for lepidopterans. Overall, however, the resulting 
models discriminated well between previously assessed threat-
ened and relatively secure species. We found binary thresholds 
for each higher taxon at which previously assessed species were 
classified accurately (albeit at quite different vote counts; 36% for 
lepidopterans and 66% for plants). Relatively low representation 
of threatened species among assessed lepidopterans (25%) ver-
sus plants (70%) may partly explain differences in the selected 
thresholds (Peirce 1884).

FIGURE 3    |    Distribution of variable importance ranks for the five predictors with the lowest mean MDA ranks (i.e. those with higher importance 
across cross-validation runs) for plants (green) and lepidopterans (yellow). Maximum ranks exceed the total number of variables because each level 
of categorical variables receives its own MDA measure.
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Our models showed strong performance on unseen data via 
cross-validation. Nevertheless, because we do not suspect that 
the training data (assessed species) are a representative sample 
of all species, we remain cautious in our claims of success. We 
know a priori that species have historically been prioritised for 
assessment based on a variety of social and ecological factors 
that, while potentially shared among assessed species, may not 
predict threat across other species that have not been histori-
cal priorities for monitoring or protection (Bachman et al. 2019; 
Brummitt et al. 2015; Di Marco et al. 2017; Fraixedas et al. 2022; 
Ricketts, Daily, and Ehrlich 2002). A strong test of our predic-
tions would require performing formal status assessments 
across a large, representative subsample of previously unas-
sessed species, which is beyond the scope of the present study. 
Here, we informally validated a small subset of the predictions 
using external lines of evidence, which supported prediction 
credibility, and thereby the use of this predictive approach at 
such a regional scale.

4.2   |   Predicted Conservation Needs Reflects 
Biogeographic Trends

Generally, our predictions received support from the exter-
nal data sources, with some caveats. Species our models pre-
dicted most likely to be threatened were much more likely to 
have been assigned a ‘threatened’ status elsewhere in eastern 
North America, and also more likely to have a ‘threatened’ 
status assigned south of Maryland, despite the fact that fewer 
taxa had status assessments in the southeastern USA than in 
the northeast and Canada. Additionally, trends in recent occur-
rences of species predicted as ‘threatened’ and ‘secure’ with high 

probabilities provide biogeographic context and support to our 
predictions.

Our models predicted the likely statuses of species, but their oc-
currences point to spatial patterns relevant in the context of re-
gional conservation and climate change. First, we found that the 
species our models predicted as ‘threatened’ were concentrated 
in the northwestern part of the state, which includes a central 
portion of the Appalachian Mountains. Second, our models pre-
dicted threat in both taxon groups for northern-ranged, likely 
cold-adapted species, and relative security for southern-ranged, 
likely warmer-adapted species. Within the State of Maryland, 
range-edge species with few populations in the State are con-
sidered conservation priorities, and our results suggest that for 
both plants and lepidoptera, cold-adapted, range-limited species 
may be especially vulnerable. More generally, montane hab-
itats harbour a high proportion of total, rare and threatened 
species (Körner  2004) and the Appalachians are no exception 
(Jenkins et  al.  2015). The Appalachian Mountains are home 
to species considered relicts from glacial periods (Pickering 
et al. 2003) that face increasing threats from climate warming 
(La Sorte and Jetz  2010; Zhu et  al.  2022). It is thus expected 
that our predictions would also highlight montane regions of 
Maryland as potential conservation hotspots. Furthermore, 
the northwestern half of Maryland contains many habitats rec-
ognised as key for wildlife conservation (Maryland Department 
of Natural Resources 2015b), as well as priority areas for con-
servation and monitoring (Maryland Department of Natural 
Resources 2015a), constituting a compelling stage for long-term 
conservation (Lawler et al. 2015). Beyond the Appalachian re-
gion, our results recovered a large number (but not proportion) 
of species predicted as threatened in the Piedmont region of the 

FIGURE 4    |    Number of species classified as threatened by the final models using the taxon group-specific probability thresholds (0.66 for plants, 
0.36 for lepidoptera), per 8 × 8 km grid cell across the state of Maryland. Colours represent number of species (see figure scales).
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State, which has seen rapid development over the past 50 years 
(Maryland Department of Planning  2010). Sheer densities of 
roads, institutions, money and people in the centre of the state 
may explain this result. However, that section of Maryland is 
experiencing stark habitat loss and fragmentation, and may also 
be an emerging priority for monitoring, status assessment and 
conservation.

Even as they are not designed for inference, our models recov-
ered ecological signals within (and between) the plant and lep-
idopteran models in measures of variable importance. These 
signals point towards mechanisms that drive threat for some 
species and relative security for others. Low variation in mean 
daily temperature range across occurrence records was a strong 
predictor of threat for both lepidopterans and plants. Otherwise, 
top predictor variables differed between the taxon groups, and 
likely reflect the ecology of each group. For plants, additional 
variables associated with niche breadth, such as the variation 
in mean temperature during the coldest month and during the 
growing period were important, along with land use history 
and growing season length. Niche breadth has long been asso-
ciated with vulnerability (Slatyer, Hirst, and Sexton 2013), and 
plants restricted to microclimates or habitat types that are rare 
in Maryland are likely under threat from anthropogenic change. 
For lepidopterans, the top variables reflected spatial limitations 
(maximum latitude, minimum longitude and mean Maryland 
latitude), as well as the number of days below 5°C, all of which 
we interpret to suggest that more cold-associated lepidopter-
ans tend to be more threatened in Maryland. Abundance and 
range shifts and declines in response to changing climate are 
well-documented in lepidopterans (Crossley et  al.  2022; Hill 
et al. 2021), and it is likely that some of Maryland's most threat-
ened insect fauna are retreating to relatively cool and high-
elevation refugia.

4.3   |   Applications

Our methodology is not intended to replace species conserva-
tion assessments (Zizka, Andermann, and Silvestro  2022) nor 
to stand in for highly contextual, place-based ecological knowl-
edge (Wyborn and Evans  2021), but rather as a tool that can 
inform prioritisation in a resource-limited conservation world 
(Sinclair et  al.  2018). As resources for protection are already 
biased towards monitoring and research, approaches like ours 
can use existing data to accelerate movement of conservation re-
sources towards active conservation work (Buxton et al. 2020). 
Maryland's 2015–2025 State Wildlife Action Plan calls for 
greater coherence in monitoring efforts, especially for species 
that have yet to be recognised as ‘of greatest conservation need’ 
(Maryland Department of Natural Resources  2015c). Towards 
these ends, first, our models provide guidance about assessed 
and unassessed plant and lepidopteran species (Supporting 
Information  S1) in a coherent, quantitative framework that 
can immediately integrate new data as they become available. 
Second, beyond individual species predictions, we also pro-
duce regional maps (Figure 3, Figure S1), that highlight prior-
ity areas where conservation needs likely intersect; these maps 
can support proactive, place-based conservation (Cardillo and 
Meijaard 2012). Third, we tentatively identify ecological features 
of threatened and relatively secure plants and lepidopterans, 

which warrant further investigation and may be applicable in 
other regions or to other taxa as well. Our results echo calls 
to protect climate refugia and unique habitat types within 
Maryland, and perhaps to assist climate-driven migration 
(Maryland Department of Natural Resources 2015a). Finally, as 
the data inputs for the approach we used are publicly available, 
as are the scripts containing our workflows (https://​zenodo.​
org/​recor​ds/​14593446), any interested party can reproduce our 
analysis, update our predictions with new data, or extend our 
method to additional taxa and locations.

Our method relies on an abundance of training data; in our case 
these consisted of conservation status rankings specific to the 
focal region and the region from which all occurrence data were 
retrieved. It is important to note that in the State of Maryland 
this was possible for the taxonomic groups we analysed, but im-
possible for other taxa (e.g. Apoidea, with few state-level con-
servation statuses recorded at the start of this project). This is 
a barrier that may exist in other regions as well, with regional 
conservation status lists often nonexistent or strongly incom-
plete. In such cases, it may be possible to use status information 
from nearby regional jurisdictions or from global assessments 
and still render informative status predictions. However, results 
of such an approach should be considered carefully, since there 
is a risk of mismatch between the true status in the focal region 
and that recorded at other scales or locations. Similarly, in more 
data-rich scenarios, users might choose to filter data to better 
match spatial resolution and location accuracy across occur-
rence data and spatial covariates, potentially improving signal-
to-noise ratios in both training and prediction datasets.

Beyond questions of which data are available or ‘best’ in some 
general sense, we note that future applications of our approach 
would ideally involve stakeholders (Knight et al. 2008). In our 
study, direct decision-maker input during model construction 
might have altered which data sources were used, how species 
were grouped into individual models (here, we generated sepa-
rate models for plants and lepidopterans), and would also have 
affected how the models were trained on those data. Decision-
makers, uniquely positioned to name the problems associated 
with different types of misclassification errors, could help trans-
late these problems into loss functions and classifier training 
criteria (Hand 2009; Walker et al. 2020). These criteria help tune 
the model to a specific application (e.g. by avoiding predicting 
that species are threatened when they are not, or the opposite), 
via hyperparameter values and vote threshold selections. One 
advantage of our approach is that it accommodates iterative, 
stakeholder-driven model construction (Pressey et  al.  2013): 
models were fit on a personal laptop; the decision trees at the 
heart of random forests are concrete, easily apprehended, and 
thus accessible; the data we used are publicly available and well-
documented. Overall, we find this modelling approach to be 
well-suited to use by local and regional conservation planners 
and decision-makers.

5   |   Conclusion

Predictive methods cannot replace localised knowledge systems 
nor systematic species assessments (Betts et al. 2020). Instead, 
in a fast-changing world in which most species, including 
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threatened species, remain unassessed and data-deficient, they 
extend the conservation utility of existing data. Here, we showed 
that a predictive method for prioritising unassessed species, 
originally developed for global applications, can be flexibly ap-
plied at smaller, regional scales and to a variety of taxa. We show 
how using occurrence records as input data enables spatially 
explicit predictions, which can highlight priority locations, and 
could facilitate place-based or ecosystem-level conservation. We 
highlighted Maryland (USA) unassessed plant and lepidopteran 
species likely to be threatened, and identified the western part 
of the state and Appalachian Mountains as hotspots for such 
likely-threatened species. Such emergent results can help re-
solve a central conservation mystery: which taxa are most vul-
nerable to which drivers (Isbell et al. 2023; Sánchez-Bayo and 
Wyckhuys 2019). The random forests we used ‘learn’ from ex-
isting, publicly accessible datasets using simple decision trees, 
require relatively little computational resources or natural his-
tory expertise to implement, and can be used ‘in house’ by re-
searchers, planners or managers at regional scales. As a result of 
the immediacy of our method, as well as the encouraging results 
from the plant and lepidopteran case studies we present here, 
we advocate for regional applications of similar predictive tools 
to better identify conservation priorities. Finally, future appli-
cations of these methods could more explicitly integrate stake-
holders, as well as consider other niche dimensions (e.g. species 
interactions or co-occurrences) into both threat assessment and 
conservation prioritisation.
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Table S1. Top and bottom fifteen (or more, in case of ties) species per taxon group, based on the predicted probability of being threatened. 

Known conservation status from other jurisdictions in eastern North America is shown, if available. Codes indicate state/province 

conservation status and the state/province in question. Row coloring indicates observed species range type. Purple: iNaturalist occurrence 

records appeared concentrated north of Maryland, with a southward extension along the Appalachian Mountains; blue: occurrences 

concentrated north of Maryland, without an Appalachian extension;  orange: occurrences appear concentrated in the Appalachian Mountains; 

green: occurrences neither concentrated to the north of Maryland nor clustered along the Appalachian Mountains; white: unclear. 

 

taxon 
group 

predicted 
status genus species vote fraction 

(threatened) status elsewhere notes 

le
pi

do
pt

er
an

s  

th
re

at
en

ed
 

Idia diminuendis 0.984 S2 ON; S3 NH; S4 PA   
Hyppa xylinoides 0.98 S4 PA, NB, NS; S5 ON   
Olethreutes quadrifidum 0.98 S4 ON   

Papaipema pterisii 0.974 SX NJ; SH DE; S3 VA, IN; S4 ON 
Eats ferns, prefers 
sandy soils 

Hypena edictalis 0.972 S3 VA; S4 ON 

very distinctive 
Appalachian extension. 
Laportea specialist. Note 
very close spelling with 
congener 

Haploa confusa 0.968 S4 ON 

Cynoglossum officinale 
specialist which has a 
pronounced northern 
range with appalachian 
extension 

Crambus bidens 0.966 S4 ON   
Plusia contexta 0.966 S4 ON   

Clepsis persicana 0.964 S4 PA, ON 

very distinctive 
Appalachian extension. 
Host generalist 

Hedya chionosema 0.964 S4 PA, ON   



Protodeltote albidula 0.958 S2 VA; S4 PA, NB, NS; S5 ON   
Schinia florida 0.958 S3 VA; S4 PA oenothera specialist 
Sicya macularia 0.958 S4 PA, ON, NB   
Nola cilicoides 0.956 S4 ON   
Peridea basitriens 0.956 S4 PA, ON, NB   
Acronicta impressa 0.95 S4 PA, NB, NS; S5 ON   

se
cu

re
 

Acronicta americana 0 S4 NB, NS; S5 PA, ON, PE   
Actias luna 0 S4 QE, NB, NS; S5 IN, PA, VT, ON   
Agnorisma badinodis 0 SH QE; S4 PA, ON   
Agrotis ipsilon 0 S5 PA   
Alypia octomaculata 0 S5 PA, ON   
Amphipyra pyramidoides 0 S4 ON, NB, NS; S5 PA   
Anageshna primordialis 0 S4 PA, ON   
Antheraea polyphemus 0 S3 VT; S4 NB, NS; S5 PA, IN, ON   
Apantesis phalerata 0 S3 QE; S4 PA, ON   
Argyrotaenia velutinana 0 S4 PA; S5 ON   
Athetis tarda 0 S3 ON, S4 PA   
Atteva punctella 0 S4 ON; S5 PA   
Battaristis vittella 0 S4 ON   
Callima argenticinctella 0 S4 ON, PA   
Cameraria guttifinitella 0     
Cisseps fulvicollis 0  S4 NB; S5 PA, ON   
Cisthene plumbea 0 S3 PA; S4 NJ   
Costaconvexa centrostrigaria 0 S5 PA, ON   
Crambus agitatellus 0 S4 ON, S5 PA   
Crocidophora tuberculalis 0 S4 PA, ON   

Cyaniris neglecta 0 
S4 ME, QE; S5 NC, TN, VA, KY, DE, 
WV, IN, PA, CT, VT, ON 

Genus seems to be 
Celastrina 

Cyclophora packardi 0 S4 ON   
Cycnia tenera 0 S4 ON, S5 PA   
Digrammia ocellinata 0 S4 PA, ON   
Dryocampa rubicunda 0 S4 NB, NS; S5 IN, PA, On   

Eacles imperialis 0 
SX ME, NH; SH RI, CT; S1 MA, S3 
QE; S4 ON; S5 NJ, PA, IN   



Elaphria grata 0 S3 ON, S4 PA   
Epimecis hortaria 0 S2 ON; S5 PA   
Epipaschia superatalis 0 S4 PA   
Euchaetes egle 0 S4 ON; S5 PA   
Eudonia heterosalis 0 S4 PA, ON   
Eumorpha pandorus 0 S3 KY; S4 IN, PA; S5 ON   
Eutrapela clemataria 0 S4 NB; S5 PA, ON   
Galgula partita 0 S4 PA; S5 ON   
Haematopis grataria 0 S4 ON; S5 PA   
Halysidota harrisii 0 S1 ON; S4 PA   
Halysidota tessellaris 0 S4 NB; S5 PA, ON   
Haploa clymene 0 SH QE; S3 ON; S5 PA   
Helicoverpa zea 0 S4 PA, NB; S5 ON   
Hemaris diffinis 0 S4 ON, S5 PA, KY, IN   
Hemaris thysbe 0 S4 KY, NB, NS; S5 IN, PA, ON   
Hyalophora cecropia 0 S3 VT; S4 IN, ON; S5 PA   
Hypena scabra 0 S4 NB; S5 PA, ON   
Hypercompe scribonia 0 S3 ON; S5 PA   
Hyphantria cunea 0 S4 NB; S5 PA, ON   
Hypsopygia olinalis 0 S4 PA, ON   
Idia aemula 0 S4 ON, NB; S5 PA   
Idia americalis 0 S4 NB; S5 PA, ON   
Isa textula 0 S2 QE; S4 PA, ON   
Lacinipolia renigera 0 S4 NB, NS; S5 PA, ON   
Lascoria ambigualis 0 S4 ON; S5 PA   
Malacosoma americana 0 S4 NB, NS; S5 PA, ON   
Marimatha nigrofimbria 0 S1 NY; S4 PA   
Mythimna unipuncta 0 S4 NB, NS; S5 PA, ON   
Nadata gibbosa 0 S4 NB; S5 PA, ON   
Nephelodes minians 0 S4 NB, NS; S5 PA, ON   
Nomophila nearctica 0 S5 PA, ON   
Orgyia leucostigma 0 S5 PA, ON   
Orthonama obstipata 0 S4 NB; S5 PA, ON   
Palthis angulalis 0 S4 NB; S5 PA, ON   



Palthis asopialis 0 S3 ON; S4 PA   
Panopoda rufimargo 0 S3 ON; S5 PA   
Parallelia bistriaris 0 S4 ON, NB; S5 PA   
Parectopa robiniella 0     
Phalaenostola larentioides 0 S4 PA, ON   
Phyllocnistis liriodendronella 0     
Platynota idaeusalis 0 S4 PA; S5 ON   
Pleuroprucha insulsaria 0 S4 PA, ON, NB   
Prochoerodes lineola 0 S4 NB; S5 PA, ON   
Prolimacodes badia 0 SH QE; S4 ON; S4 PA   
Protodeltote muscosula 0 S4 NB, NS; S5 PA, ON   
Pseudeustrotia carneola 0 S4 NB; S5 PA, ON   
Renia adspergillus 0 S5 ON   
Schinia arcigera 0 S2 QE; S4 PA, NY, ON   
Scopula limboundata 0 S4 NB; S5 PA, ON   
Spilosoma virginica 0 S4 NB; S5 PA, ON   
Synchlora aerata 0 S4 PA, NB; S5 ON   
Zale lunata 0 S4 ON; S5 PA   
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Physalis pubescens 0.954 S3 NC; S4 FL, KY, VA, DE 

Knapp and Naczi list 
var. integrifolia as a waif 
but var. pubescens as a 
MD native 

Oenothera perennis 0.95 

S1 GA; S2 SC, KY; S3 IN, NJ; S4 VA, 
WV, PE; S5 PA, NY, VT, ON, QE, 
NB, NS   

Bidens vulgata 0.948 
S3 NC, QE, NS; S4 DE, NB; S5 IN, 
KY, VA, WV, PA, NJ, NY, ON, VT   

Sphenopholis nitida 0.94 
S1 ON, VT; S2 MA; S4 NC, KY, WV, 
DE, NJ; S5 VA, PA, NY   

Carex kraliana 0.932 S1 WV, S4 MS, GA, SC, IN   

Poa autumnalis 0.932 
SX NJ; S1 PA; S2 DE; S4 NC; S5 
SC, WV, VA   

Triadenum fraseri 0.926 

S1 TN, NC; DE; S2 VA; S3 NJ; S4 
WV, PA; S5 NY, VT, ON, QE, NB, 
NS, PE   



Dendrolycopodium hickeyi 0.922 

S1 SC; S2 NC; S3 VA, WV, NJ, IN, 
PE; S4 KY; ON, QE; NB; NS; S5 NY, 
VT   

Cornus alternifolia 0.92 

S2 MS, FL; S3 NJ; S4 GA, NC, DE 
ON, PE; S5 VA, WV, PA, NY, VT, 
ON, NB, NS   

Pyrola americana 0.92 
SX KY; S2 TN, NC, IN, DE; S4 NJ, 
VT, ON, QE, NB; S5 VA, WV, NY, NS    

Calystegia spithamaea 0.916 
SH CT; S1 DE, MA; S2 NC, CT, ME; 
S4 KY, WV, ON   

Euphorbia commutata 0.916 
S1 NC, MI, ON; S2 FL; S3 GA; S4 
KY, WV, VA   

Polygala verticillata 0.916 
S1 RI, NB; S2 MA, VT; S3 NC, ON; 
S4 VA, DE S5 BA, KY, WV, PA   

Polypodium appalachianum 0.916 
S1 ON, PE; S2 SC; S3 QE, NB, NS; 
S4 NC, WV, VA, NJ; S5 KY, NY, VT   

Solidago squarrosa 0.916 

SH KY, DE; S1 NC, IN, NJ; S2 OH, 
VT; S3 VA, QE; S4 WV, ON, NB; S5 
NY   
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Carex comosa 0.148 

SH KY; S1 MS, PE; S2 TN, WV, NB, 
NS; S3 NC, QE; S4 VT; S5 VA, DE, 
NJ, PA, NY, ON   

Carex annectens 0.156 
S1 QE, NB, PE; S22 ON; S3 NC; S4 
DE; S5 KY, WV, VA, PA, NY, VT   

Andropogon glomeratus 0.172 
S1 OH; S3 NY; S4 KY, WV; S5 GA, 
SC, VA   

Carex longii 0.174 
SH VT, ON; S1 OH, WV; S2 KY, PA, 
NS; S3 NY; S4 DE, NJ; S5 SC, VA   

Polygala mariana 0.184 
SX NY; S1 TN; S2 NJ; S4 AL, NC; 
DE; S5 KY, VA   

Carex swanii 0.186 

SX NB; S2 SC, QE; S3 GA, NC, NS; 
S4 MS, ON; S5 KY, WV, VA, DE, NJ, 
PA, NY, VT   

Cyperus retrorsus 0.188 
SH PA; S1 NY, MA; S2 KY; S4 FL, 
DE; S5 MS, GA, SC, NC, VA   



Carex lupulina 0.19 

S3 NB, NS; S4 MS, FL, VA, VT, QE; 
S5 SC, NC, IN, KY, WV, DE, NJ, PA, 
NY, ON   

Juncus dichotomus 0.192 
SH NH; S1 OH, WV, PA; S2 NY; S4 
GA, DE; S5 SC, NC, VA, NJ   

Lobelia puberula 0.192 S1 PA, S4 KY; S5 SC, NC, VA, WV   

Hydrocotyle umbellata 0.194 
SH PA; S1 OH, CT; S2 NY, NS; S4 
NJ; S5 FL, NC, VA, DE   

Dichanthelium scoparium 0.196 
SH WV, S1 IN, OH, PA, NY, MA; S3 
FL; S4 NJ; S5 SC, NC, VA, DE   

Fimbristylis autumnalis 0.196 
S1 VT, NS; S2 ME; S4 NC, ON, QE; 
S5 SC, KY, WV, VA, DE, NJ, NY   

Phoradendron leucarpum 0.196 
SX PA, NY; S3 IN, NJ; S4 OH, WV, 
DE; S5 FL, NC, VA   

Elymus virginicus 0.198 S4 WV; S5 NC, KY, IN, NY, ON   
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Figure S1. The proportion of species predicted as "threatened" in final models using the taxon-group-specific probability thresholds (0.66 for 

plants, 0.36 for lepidopterans) was highest in western Maryland for both taxa. Proportions computed for each 8km x 8km grid cell across 

the state of Maryland. Colors represent proportion of species in that category occurring in each cell. 
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