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 A B S T R A C T

Infectious disease outbreaks with pandemic potential present challenges for mitigation and control. Policy-
makers must reduce disease-associated morbidity and mortality while also minimizing socioeconomic costs of 
interventions. At present, robust decision frameworks that integrate epidemic and macroeconomic dynamics 
to inform policy choices, given uncertainty in the current and future state of the outbreak and economic 
activity, are not widely available. In this study, we propose and analyze an economic-epidemic model 
to identify robust planning policies that limit epidemic impacts while maintaining economic activity. We 
compare alternative fixed, dynamic open-loop optimal control, and feedback control policies via a welfare 
loss framework. We find that open-loop policies that adjust employment dynamically while maintaining a 
flat epidemic curve outperform fixed employment reduction policies. However, open-loop policies are highly 
sensitive to misestimation of parameters associated with intrinsic disease strength and feedback between 
economic activity and transmission, leading to potentially significant increases in welfare loss. In contrast, 
feedback control policies guided by open-loop dynamical targets of the time-varying reproduction number 
perform near-optimally when parameters are well-estimated, while significantly outperforming open-loop 
policies whenever disease transmission and population-scale behavioral response parameters are misestimated 
— as they inevitably are. Our study provides a template for integrating principled economic models with 
epidemic scenarios to identify policy vulnerabilities and expand policy options in preparation for future 
pandemics. Across disease scenarios, we show that policies that temporarily limit economic activity and disease 
transmission reduce both disease-driven mortality and cumulative loss of economic activity. Our study suggests 
that future preparedness depends on feasible, robust, and adaptive policies and can help avoid false dichotomies 
in choosing between public health and economic outcomes.
1. Introduction

Emerging and re-emerging infectious diseases threaten global health 
and socioeconomic well-being (Christakis, 2020; Ferguson et al., 2020). 
In response to the potential catastrophic threat of COVID-19, gov-
ernments rapidly imposed social distancing and/or lockdowns to re-
duce contacts between susceptible and infectious individuals (including 
those who may be unaware they are infected Gandhi et al., 2020) as a 
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means to reduce rates of new infections (Hellewell et al., 2020; Atkeson, 
2021; Atkeson et al., 2021). Model-inferred estimates suggest that ∼
3.1 million deaths were averted in 11 European countries between 
February–May 2020 due to national lockdowns (Flaxman et al., 2020), 
while social distancing policies in China, South Korea, Italy, Iran, 
France, and the United States led to more than 61 million averted cases 
between February–April 2020 (Hsiang et al., 2020). However, such 
counterfactuals come with significant caveats. First, baseline epidemic 
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Fig. 1. Schematic of the econo-epidemic modeling framework with epidemic dynamics, macroeconomic model of welfare loss, endogenous response, and feedback 
with a social planning problem. The top section provides an overview of the underlying econo-epidemic model. The bottom section provides an overview of the 
social planning process that integrates economic and public health impact as a means to develop optimal policies (both open- and closed-loop) to minimize 
welfare loss through modification of employment reduction policies. Full specification of the epidemic model dynamics, economic model structure, control 
theoretic approach, policy planner optimization, and disease parameters are found in Supplementary Text A.
models do not typically integrate behavioral change (and/or alternative 
mitigation steps) that could lead to reduction in transmission and 
fatalities  (Weitz et al., 2020). Second, even if early transmission is 
averted, subsequent relaxation of policies can lead to rapid resurgence 
of infections and fatalities (Du et al., 2023). Third, societal-scale lock-
downs impose health costs, decreasing the frequency of regular clinical 
care visits including screening for cancers (McBain et al., 2021), while 
increasing social isolation that impacts the mental health of children 
and adults (Moreno et al., 2020).

Local, regional, and national lockdowns also come with substantive 
socioeconomic costs that are the subject of ongoing debate (Macedo 
and Lee, 2025). In macroeconomic terms, lockdowns reduce economic 
activity due to production declines and decreases in productivity, losses 
of revenue, and business closures that ripple across different economic 
sectors. People and policymakers are still dealing with the aftermath of 
lockdowns. For example, lockdowns are hypothesized to have fueled 
a burst of inflation (Jordà et al., 2022) driven, in part, by supply-
chain disruptions. Likewise, changes in the labor market induced by the 
pandemic, including increases in remote work, shifts in jobs, industries, 
and employment patterns, and shifts in market demand have continued 
to impact economic productivity and gross domestic product world-
wide (Amiti et al., 2024; Harding et al., 2023; Autor et al., 2023). In a 
2024 public forum (Williams and Reis, 2024), the Federal Reserve Bank 
of New York President John Williams expressed dissatisfaction with 
econo-epidemic models. Inadequately integrating principled economic 
models with epidemic scenarios generates vulnerabilities in policy 
responses that prioritize one of health or economic outcomes at the 
expense of the other. As a result, there are unresolved questions on 
the links between epidemic dynamics, policy response, and economic 
impacts spanning increases in inflation, supply chain dilemmas, and 
changes in the labor market (Jordà et al., 2022; Amiti et al., 2024; 
Harding et al., 2023; Autor et al., 2023).

This paper addresses the gap between public health policies that 
aim to decrease the morbidity and mortality associated with disease 
outbreaks, and social planning policies that aim to stimulate and sustain 
economic activity. In doing so, we integrate both sets of goals in a 
common valuation framework and ask: what feasible policies minimize 
health impacts while maximizing economic activity? To address this 
2 
question, we develop a social planning policy analysis framework that 
(i) includes realistic, feasible policy plans that account for lags in im-
plementation and discrete policy periods; (ii) utilizes a common ‘value 
of reduced mortality risk’ (VRMR) framework for jointly evaluating 
the macroeconomic and public health effects of policy objectives — 
VRMR quantifies the equivalent substitution between averted deaths 
and money (Simon et al., 2019); (iii) accounts for behavioral response 
and the lack of precise information on (re)emerging diseases. We use 
this framework to evaluate three classes of policy types: (i) fixed control 
policies (that predefine interventions and do not change in time); (ii) 
dynamic open-loop optimal control policies (that are dynamic in time 
but predetermined at the outset); and (iii) feedback control policies 
(that are dynamic in time and are adjusted during the outbreak based 
on real-time measurements). By integrating a common valuation frame-
work and evaluating policies through commonly measured indicators of 
disease impact, we explore when and how policy planners can feasibly 
achieve nearly optimal population-scale epidemic and economic objec-
tives in the face of persistent uncertainty regarding transmission and 
responses at individual scales.

2. Results

2.1. Econo-epidemic modeling framework

We developed an integrated econo-epidemic modeling framework 
amenable to a social planning problem that can be used to iden-
tify ‘optimal’ policies given variation in disease transmission, behav-
ioral response, and economic output (Fig.  1). To do so, we utilize a 
Susceptible–Exposed–Infectious–Recovered/Removed (SEIR) epidemic 
modeling framework to represent disease spread at population scales 
(full equations in Supplementary Information (SI) Text A). The time 
varying incidence, 𝛽𝑡𝑆𝐼 , given the susceptible fraction 𝑆 and infectious 
fraction 𝐼 is modulated by the transmission rate 

𝛽𝑡 = 𝛽𝑊 − 𝛽𝑁

(

1 −
𝑛𝑡
𝑛𝑆𝑆

)𝛼
+ 𝛽𝛬 exp (−𝛬𝑡) (1)

which is driven by a combination of factors: (i) baseline interactions 
when the economy is open (𝛽 +𝛽 ); (ii) rapid behavioral adaptation of 
𝑊 𝛬
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Fig. 2. Optimal fixed employment reduction policies reduce welfare loss, balancing impacts of cumulative fatalities and reduction in GDP. Panels (A)-(C) show 
the outcome of fixed employment reduction (on the x-axis) in terms of fatalities (per 100,000), GDP loss (%), and % welfare loss, respectively. The three curves 
in each panel denote outcomes given baseline (black, 0 = 2.86, 𝛽𝑊 = 0.376), elevated (red, 0 = 3.156, 𝛽𝑊 = 0.45), or reduced (blue, 0 = 2.556, 𝛽𝑊 = 0.3) 
disease transmission conditions, consistent with variation in early estimates of COVID-19 strength (Park et al., 2020b). Likewise, Panels (D)-(F) show modulation 
of the impact of employment reduction on transmission using the disease parameters in the black curve conditions in Panels (A)-(C), given more impactful (pink, 
𝛽𝑁 = 0.6), and less impactful (orange, 𝛽𝑁 = 0.4) conditions. The baseline employment impact is when 𝛽𝑁 = 0.53. For each scenario in Panels (C) and (F) there is 
an optimal, fixed employment reduction policy which corresponds to the point at which welfare loss is at its minimum.
the population over a short time scale (1∕𝛬) uncoupled to employment 
levels that reduces transmission by 𝛽𝛬 – this captures the initial learning 
phase after the outbreak onset; (iii) endogenous behavioral response 
arising from individual-level decisions not necessarily mandated by 
policy (e.g., working from home, masking, and improved ventilation in 
the case of respiratory diseases); (iv) policy-induced dynamic reduction 
in transmission. The realized employment level 𝑛𝑡 relative to the steady-
state economy 𝑛𝑆𝑆 leads to a reduction in transmission parameterized 
by 𝛽𝑁  and an exponent 𝛼. The resulting time-dependent effective 
reproduction number is therefore 𝑡 = 𝑆𝑡

𝛽𝑡
𝛾 , where 𝛾 is the removal 

rate of infectious individuals.
The disease model is coupled to a macroeconomic model in which 

the gross domestic product (GDP) is driven by a linear production 
function tied to employment, assuming constant wages and that out-
put is fully consumed (see SI Text A). Employment is influenced by 
(i) individual-level economic activity guided by utility maximization 
linked to the severity of the disease outbreak, 𝑏(𝐷̇𝑡, 𝑡), which we refer 
to as the endogenous behavioral response, and (ii) a social planner that 
imposes a level of preferred employment reduction, 𝐿𝑡. We assume that 
the realized employment reduction is the maximum of these two effects, 
i.e., 

𝑛𝑡 = 1 − (𝑚𝑎𝑥{𝑏(𝐷̇𝑡, 𝑡), 𝐿𝑡}). (2)

In this combined econo-epidemic modeling framework, the objective 
of the central planner is to minimize welfare loss 𝑊𝐿

(

𝐿
) caused by 
𝑡

3 
the disease, balancing the death toll with the economic costs (i.e., cu-
mulative work hours, see SI Text A). Welfare loss is a function of the 
policy 𝐿𝑡 equivalent to the fractional employment reduction — which 
typically exceeds the endogenous response. Welfare loss is measured 
by economic utility/welfare units and is nonlinearly related to wages, 
level of economic utility, the death toll, and the disutility from working. 
Throughout, we consider the social planning problem over a time 
horizon 𝑇  in which we expect the large-scale dissemination of effective 
vaccines (Supplementary Table S5).

2.2. Evaluation of fixed employment reduction policies to minimize welfare 
loss during a pandemic

In the absence of social planning interventions, an initially small 
fraction of infected individuals will catalyze an outbreak leading to 
transient reduction in employment due to utility maximization via 
the endogenous behavioral response. This scenario (Supplementary 
Figure S1) leads to large-scale outbreaks and significant loss of life. It 
also provides the baseline for evaluating alternative, fixed economic 
reduction policies intended to reduce welfare loss. To generate the 
baseline dynamics associated with basic reproduction number 0, we 
consider variation in fixed employment reduction policies across a 
continuum ranging from fully open to a maximally restricted economy 
(econo-epidemic model parameterization in Supplementary Table S5). 
Employment reduction reduces cumulative fatalities while increasing 
economic loss. We identify an optimal, intermediate lockdown level 
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corresponding to a fixed policy that minimizes welfare loss compared to 
viable alternatives (see minima in welfare loss in the top panels of Fig. 
2). Variation in either the intensity of baseline transmission (due to dif-
ferences in disease features leading to changes in 0) or the efficacy of 
employment reduction on transmission lead to different optimal, fixed 
employment reduction policies (Fig.  2 bottom). Typically, increases 
in disease intensity and/or decreases in the efficacy of employment 
reduction on transmission increase the welfare loss associated with 
fixed, optimal policy responses. Hence, insofar as disease intensity and 
the link between employment reduction and transmission are known 
with certainty, there exists an optimal fixed response that can be 
planned in advance.

2.3. Open loop control policies outperform fixed lockdown policies in min-
imizing welfare loss during pandemics

We sought to identify and characterize optimal open loop, time-
dependent policies given continuous variation in employment reduction 
levels 𝑛𝑡, rather than fixed employment reduction policies as explored 
in the previous section. To do so, we pose and solve an optimal 
control problem using a robust steepest-descent algorithm based on 
the maximum principle (detailed in the Supplementary Information). 
We utilize the employment reduction level, 𝑛𝑡, as the control variable 
accessible by the policy maker which influences transmission and the 
effective reproduction number. Fig.  3 panels (a-c) and (d-f) compare 
consequences for welfare loss and optimal control solutions 𝑛𝑜𝑐 (𝑡) for 
low, medium, and high basic transmission cases, spanning 0 ≈ 2.6, 
2.9, and 3.2 respectively. In each case, the optimal control algorithm 
identifies time-dependent changes in employment reduction (see Sup-
plementary Figure S2 for disease dynamics, 𝑒𝑓𝑓 , and welfare loss). 
Initially, the economy is restricted with significant economic cost. 
Given low prevalence (and low mortality), the rapid learning period 
reduces transmission (e.g., via masks, social distancing, and crowd 
avoidance), leading to a reduction of 𝑒𝑓𝑓  close to, but slightly above 
1. Then, exponential increases in disease burden drives a second phase 
of reduced employment that exceeds employment reduction expected 
through the endogenous response alone. Hence, the open loop optimal 
control policy reduces 𝑒𝑓𝑓  slightly below 1. Finally, the expected 
arrival of an effective vaccine disseminated at high coverage allows 
the optimal planner a means to reduce restrictions. These three phases 
appear most evidently in the high disease scenario, but are present in 
each of the low, medium, and high transmission scenarios in the opti-
mal continuous policy. The equivalent total welfare loss for the optimal
time-dependent policy is shown as a function of 0 in panels (a)–(c). We 
also confirm that these time-dependent policies could be implemented 
feasibly, i.e., by restricting the interval length during which a policy 
could be changed. In practice, we offer the planner limited flexibility, 
showing that 3 policy regimes are sufficient for an 18-month inter-
vention period. The optimal piecewise constant curves (i.e., ‘optimal 
stepwise policies’) are paired with each optimal continuous policy in 
panels (d)–(f), closely mimicking the optimal continuous policy both 
in shape and in performance. Notably, the optimal time-dependent 
policies (whether continuous or stepwise) each identify nearly the same 
level of employment reduction. However, the time at which the optimal 
control algorithm identifies the appropriate moment to shift between 
policies (initial, restricted, relaxed) varies with the underlying disease 
strength (see Supplementary Figure S2). This variation also suggests 
that misestimation of disease strength during the planning policy could 
lead to mismatched responses.

2.4. Fragility of optimal control policies given uncertainty

Optimal control problems can be sensitive to misspecification of 
parameters, especially when applied to nonlinear dynamic systems 
with the potential for (transient) exponential growth (Morris et al., 
2021). Hence, we set out to evaluate the sensitivity of performance, as 
4 
measured in terms of welfare loss, given solutions of the optimal control 
algorithm for parameters 𝜃𝑟𝑒𝑓  when the disease outbreak is character-
ized by 𝜃𝑎𝑙𝑡 ≠ 𝜃𝑟𝑒𝑓 . As above, the optimal control problem is solved 
using a model-based, open loop, offline computation yielding time-
dependent policies for transmission that can be mapped to equivalent 
employment reduction policies 𝑛𝑡. Fig.  4 highlights the sensitivity of the 
optimal time-dependent policy to misspecification of parameters. The 
purple curves in panels (b)–(d) show the difference between the death 
toll, GDP loss, and welfare loss relative to the optimal time-dependent 
policy given a reference basic reproduction number (x-axis, vertical 
dashed line). When the pathogen is less transmissable, then the optimal 
policy will be overly cautious, leading to modest decreases in the death 
toll, substantial increases in GDP loss, and substantial increases in 
welfare loss, just as fixed policies are prone to misspecification errors 
(as in Fig.  2). Likewise, when the pathogen is more transmissable, then 
the optimal policy will be insufficiently cautious, leading to substantial 
increases in the death toll, modest improvements in GDP loss, and 
substantial increases in welfare loss (Fig.  2). Sensitivity analysis of 
misspecification of other parameters indicates that the optimal policy is 
fragile when the parameters directly affecting the reproduction number 
are misspecified (e.g., the impact of employment on the spread of 
the disease). In contrast, the policy remains robust to misspecification 
of parameters that influence the reproduction number only indirectly 
(e.g., the death rate, VRMR, or the expected arrival time of vaccine).

2.5. Robust feedback control in econo-epidemic models

Identifying optimal, time-dependent planning policies via open loop 
algorithms leads to improvements in welfare loss compared to fixed 
policies (see Fig.  3) provided they rely on accurate disease param-
eter estimates (see Fig.  4). However, a comparison of optimal time-
dependent policies did yield a dynamical insight — despite differences 
in employment reduction associated with variations in underlying dis-
ease strength, the target levels of 𝑒𝑓𝑓  were relatively robust. For 
example, when varying 0 from 2.556 to 3.156, while we found ap-
proximately 400% relative differences in employment reduction during 
the restricted phase, the 𝑒𝑓𝑓  relative difference was around 6% (see 
Supplementary Figure S2). In this restricted phase, we observe an 
emergent feature of disease transmission dynamics — the disease is 
controlled at levels where 𝑒𝑓𝑓 < 1, but only slightly so. Maintain-
ing the effective reproduction number below 1 constrains exponential 
increases in incidence without paying the economic cost of more re-
strictive measures. Hence, we implemented a feedback control planning 
algorithm that tracks 𝑒𝑓𝑓  (note that real-time estimates of the ef-
fective reproduction number are increasingly accessible Gostic et al., 
2020). We implement the feedback control using the proportional–
integral–derivative (PID) control technique (Franklin et al., 2019) (the 
algorithm is detailed in Supplementary Text B.2). Fig.  4a specifies 
the resulting feedback control policy when optimized for the correct 
and mismatched disease parameters (both stronger and weaker than 
the reference parameters). Note that despite the misspecification, the 
feedback control policy identifies similar (albeit slightly lagged) shifts 
in the timing between initial, restricted, and relaxed phases. Moreover, 
the welfare loss under the feedback control policy is robust to mis-
specification of parameters. We show the robustness of outcomes with 
respect to the link between employment and transmission in Figure 
S4; similar results hold for variation in the death rate, the incubation 
period, the expected arrival time of vaccines, and the VRMR (value 
of reduced mortality risk). This robustness of policy response in the 
closed-loop case contrasts with the extreme sensitivity of the optimal 
time-dependent employment reduction policy identified through an 
open loop, optimal control algorithm (contrast green, feedback control 
with purple open loop, optimal control in Fig.  4d).
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Fig. 3. Performance of open loop, optimal control policies across disease transmission conditions. Three optimal policies are contrasted with no intervention 
and maximal intervention options. The open loop policies include an optimal fixed, continuous, and stepwise policy. Panels (a)–(c) show the cumulative welfare 
loss for all five cases, in each case the optimal policies outperform either no intervention or full restrictions. Panels (d)–(f) show the employment reduction over 
time for the three optimal policies. Each of the three plots in the 2 panels denotes the policies and outcomes for 3 different disease transmission conditions: 
Low (0 = 2.56), medium (0 = 2.86), and high (0 = 3.16). Across conditions, the optimal stepwise policy closely resembles the continuous optimal policy, and 
consistently outperform fixed policies.
3. Discussion

We developed and analyzed a social planning problem centered 
on an econo-epidemic model that couples transmission dynamics be-
tween individuals with changes in employment. Our objective was to 
identify a suite of feasible and robust social planning policies that 
could minimize welfare loss as measured in terms of the value of 
reduced mortality risk, i.e., accounting for fatalities averted during the 
pandemic as well as GDP decreases arising from employment reduction. 
In doing so, we considered a fully coupled model such that changes 
in disease severity would decrease employment through endogenous 
feedback which, in turn, would lead to decreases in transmission. The 
social planner then has the opportunity to go beyond endogenous 
response and restrict economic activity. As we show, although it is pos-
sible to devise an optimal, dynamic policy with reduced employment 
that outperforms any fixed policy (e.g., lockdowns or otherwise), such 
optimal dynamic policies can be extremely sensitive to misestimation of 
disease transmission parameters and/or the impact of economic activity 
on disease transmission. Indeed, implementing the incorrect ‘optimal’ 
dynamic policy can lead to mismatched timing of interventions and 
significant increases in welfare loss. Instead, we show that such optimal 
dynamic policies can be used as a guide for a feedback control pol-
icy, leveraging robustness properties and implementation principles of 
proportional–integral–derivative (PID) controllers. As a result, a social 
planner can implement a feedback control policy that is feasible (i.e., is 
implemented via a combination of fixed policy blocks), nearly-optimal 
(i.e., performs nearly as well as the optimal dynamic policy with perfect 
5 
information), and robust to misspecification (i.e., continues to perform 
nearly as well as the optimal dynamic policy even when parameter 
estimations are misaligned with reality). If prepared in advance, such 
social planning policies could counter false dichotomies surrounding 
prioritization of public health or the economy.

The COVID-19 pandemic is unlikely to be the last. Increasing mo-
bility that enables long-distance transmission, changes in climate that 
facilitate expansion of pathogen geographic ranges, and increasing 
stress placed at human-zoonotic interfaces can each contribute to in-
creasing the pandemic potential of endemic and emerging pathogens. 
Specific threats include COVID-19, H5N1 (and other avian influenza 
variants), as well as vector-borne viruses with pandemic potential 
(Zika, Nipah, and others) (Jones et al., 2008; Salyer et al., 2017; Marani 
et al., 2021; Bernstein et al., 2022; Holmes, 2022). These diseases pose 
an increasing and critical threat to global health and economic security. 
The June 2021 report of a high-level G20 panel posits that “We are in 
an age of pandemics.... There is every likelihood that the next pandemic 
will come within a decade — arising from a novel influenza strain, 
another coronavirus, or one of several other dangerous pathogens. 
Its impact on human health and the global economy could be even 
more profound than that of COVID-19.” Hence, response to pandemic 
threats requires planning scenarios that address the joint problem of 
mitigating transmission risk while minimizing socioeconomic impacts. 
For example, a study preceding the COVID-19 pandemic estimated that 
pandemic impacts might approach 500 billion dollars per year (0.6% 
of global income) (Fan et al., 2018). In fact, GDP decreased by ≈3% 
in 2020, or approximately 2.5 trillion dollars (Gagnon et al., 2023), 
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Fig. 4. Comparison of epidemic outcomes given social planning policy guided by feedback, closed-loop control vs. open loop control. (a) Employment reduction 
policies in the case of low, medium, and high disease transmission respectively. The curves contrast the optimal, open-loop continuous policies given accurate 
knowledge of the disease state (dashed line) with a feedback, closed-loop control policy that does not use direct information about the disease state (solid line). 
Impact of misspecification of disease parameters given variation in the basic transmission level, 𝛽𝑊 , given differences in (b) death toll, (c) GDP loss, and (d) 
relative change in WL. The optimal policy is highly sensitive to misspecification of disease transmission rates, whereas the feedback control policy approach is 
not. The feedback policy maintains low levels of death, GDP loss, and overall welfare loss across different estimates of disease strength during planning.
consistent with interquartile range estimates of 2.6%–4.2% total GDP 
loss per year due to global warming by 2050 under a 1.5 ◦C increase 
scenario (IPCC, 2023). There is a clear need to leverage lessons learned 
from the COVID-19 response and improve public health infrastructure. 
However, social fatigue, the spread of misinformation, and politiciza-
tion of public health response each presents challenges to coordinated 
responses if a novel threat were to arise.

Here, the social planning response is guided by an idealized model 
of disease spread coupled to an economic model. Both the economic 
and epidemic model come with caveats. The epidemic model is based 
on a SEIR model, an intentional oversimplification of complex disease 
dynamics. Nonetheless, SEIR models or variants, including branching 
process models, have features that closely resemble those in real out-
breaks (e.g., unimodal generation interval distributions) and are often 
utilized in response to a novel outbreak (Park et al., 2020a; Read 
et al., 2021). An important priority for future work is to evaluate the 
dynamics of policy recommendations as parameter estimates and model 
structure change during an outbreak. Changes may reflect recognition 
of risk-stratification (Britton et al., 2020; Rose et al., 2021; Berestycki 
et al., 2021; Gomes et al., 2022; Berestycki et al., 2023), better-
performing models within a forecast hub (Cramer et al., 2022), and 
updates to core transmission routes that inform intervention strate-
gies (Gandhi et al., 2020; Morawska and Milton, 2020). Extensions 
should also address differential impacts on distinct regions (Kortes-
sis et al., 2020) especially when projecting from beyond the initial 
outbreak phase (Kissler et al., 2020). Likewise, the economic model 
is simplified. It can be extended by modeling the heterogeneity of 
individuals (Brotherhood et al., 2024) and of firms or sectors (Kaplan 
6 
et al., 2020), explicit modeling of costs to policy implementation (Du 
et al., 2025), and the formulation of learning mechanisms (Eichen-
baum et al., 2024). Likewise the epidemic model includes a relatively 
simplified representation of outbreak dynamics. The model neglects 
differences in asymptomatic, presymptomatic, and symptomatic trans-
mission, does not account for age–structure or heterogeneous mixing, 
stochasticity, evolution of strains, nor spatially explicit dynamics aris-
ing from a combination of long-distance travel and local mobility 
patterns. Nonetheless, the framework presented here could be adapted 
to variations of both the economic and/or epidemic components of the 
model. In doing so, it will be essential to consider to what extent social 
planning is feasible, improves upon expected endogenous responses to 
epidemics, and does not unintentionally induce increases in welfare 
loss.

We anticipate that efforts to extend the social planning framework 
in this paper to other epi-economic contexts will face similar tensions 
in efforts to minimize the conflicting costs of the economy vs. mor-
tality and morbidity in the population. Here, we focused on a control 
theoretic-approach to policy intervention that modulated activity rates. 
By comparison, Du et al. (2025) evaluated the behavior of heteroge-
neous agents optimizing dynamic labor/work decisions under infection 
risk and focus on behavioral heterogeneity and policy scenarios rather 
than on a formal social-planner welfare-loss control problem. Like-
wise,  Boucekkine et al. (2024) systematize the field’s conceptual and 
mathematical challenges (non-convex disease dynamics, existence/suf-
ficiency in optimal control), but do not propose a concrete feedback 
policy. Bonnet et al. (2024) map four model families and identify 
limited coverage of disparities and poverty and limited developing-
country focus. Finally, Haw et al. (2022) formalize the causal study 
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of econo-epidemics and enumerate key dataset and constraint needs 
to advance this interface. We note that policy interventions could 
include a broader range of options such as paid medical leave and 
direct financial incentives, as in a recent study (Du et al., 2025). We 
caution that strict use of open-loop control may remain sensitive to 
misspecification of parameters associated with disease and behavioral 
feedback. Instead, we advocate a multi-step strategy. First, open-loop 
control can be used to identify a measurable proxy (e.g., here we focus 
on the effective reproduction number of the disease Gostic et al., 2020) 
to achieve desired outcomes (e.g., minimizing welfare loss). Then, the 
optimal policy can be computed by feedback control such that the goal 
of policy interventions is to aim the measured, effective reproduction 
number to a given target value. The advantage of the closed-loop 
control system over that of the open-loop control is its robustness to 
parameter misspecification. The robustness in a closed-loop setting is 
made possible by the flow of information from the realized dynamics 
(and its deviation from expected dynamics) back to the social planner. 
The flow of real-time information is absent in open-loop scenarios. This 
robustness represents a strong rationale for consideration of closed-loop 
control approaches for policy interventions in practice.

In closing, consistent with prior work focusing on control strategies 
to manage COVID-19 epidemic dynamics (in the absence of socioeco-
nomic feedback Morris et al., 2021; Castro et al., 2020) we find that 
optimal dynamic control policies are highly sensitive to misspecifica-
tion of parameters and dynamics, lead to mistimed interventions, and 
increases in welfare loss. Although feedback control policies are robust 
to the assumptions and feedback in the present econo-epidemic frame-
work, it will be essential to evaluate robustness to structural and param-
eter uncertainty in more complex models moving forward (Du et al., 
2025). Implementing policies that reduce welfare loss also depends on 
the extent to which individuals take steps to reduce transmission in 
response to perceived risk of infection. Increasing polarization (Leonard 
et al., 2021) and/or social conformity (Morsky et al., 2023) could 
limit the effectiveness of endogenous responses, thereby increasing the 
need for intervention policies, while at the same time undermining the 
effectiveness of policies. We recommend that efforts to communicate 
optimal feedback control policies prioritize communication of the ben-
efits and rationale behind policies — both in terms of public health and 
socioeconomic benefits. Doing so will not just require development of 
more sophisticated models, but an increasing willingness to collaborate 
across social sciences, economics, and public health.
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Supplementary Information for Integrating Macroeconomic and Public Health Impacts in Social
Planning Policies for Pandemic Response

A Econo-Epidemic Model Framework

A.1 The Planner Objective Function

A central social planner aims to minimize welfare loss WL caused by the disease, balancing the
death toll with economic cost. This is done by using a policy tool – employment reduction (Lt) –
which restricts economic activity in order to reduce the spread of the disease. By economic activity,
we mean employment (hours of work), though this can be generalized.

The objective function of the controlled variable Lt, to be minimized, is given by:

WL(Lt) =
∫ T

TV=0
f (TV) ·

∫ TV

0
e−rt [(Dt + ϕIt)WLD + (1 − Dt − ϕIt)WLL + χ · Ḋt

]
dt · dTV (S1)

where

(i) f (TV)− PDF of vaccine arrival time TV .
(ii)

∫ T
0 e−rt−discounting of future values with interest rate r. Time T is the planner horizon.

(iii) The fraction of the population (itself normalized to 1) who do not work (including the in-
fected who are isolating) is given by Dt + ϕIt, where WLD is the loss of welfare associated with a
person not producing.

(iv) The fraction of the population working is given by (1 − Dt − ϕIt) and WLL is the loss of
welfare associated with a production level below an endogenously preferred level (more on this
below).

(v) The contribution to welfare loss from the death toll is given by χ · Ḋt with χ > 0 is the value
of reduced mortality risk and Ḋt is the flow of deaths.

Welfare loss is measured by economic utility/welfare units, where we follow the modeling
precedents of previous research [1]. For welfare itself we use W ≡ ln (wn)− n5

5 where n is the level

of economic activity (fraction of daily hours worked), w is the daily wage, and n5

5 is the disutility
from working, further explained below.

Specifically:
a) WLD =

(
ln (w)− 1

5

)
is the welfare from working full time; this is lost for people not working,

Dt + ϕIt.

b) WLL = −
(

ln
(

nt
1−b(Ḋt ,t)

)
+ 1

5

(
1 −

(
nt

(1−b(Ḋt ,t))

)5
))

is the loss of welfare when employ-

ment nt is restricted by policy to be below the level endogenously chosen by individuals, discussed
below.

c) The level of economic activity is restricted by nt = 1−max( b(Ḋt, t), Lt)) where Lt is the policy
tool and b(Ḋt, t) captures the endogenous response of individuals, which expresses both fatalities
awareness (being a function, b, of the flow of deaths, Ḋt) and issues related to time, such as fatigue
(dependence on t).

d) Both Lt and 1 − b(Ḋt, t) are bounded from above by L capturing the maximum attainable
restriction on economic activity.

Planner’s horizon T is set so that the probability of vaccine arrival before that day exceeds 99%.

The idea of a social planner has been used extensively in studying social welfare. The latter
concept has been discussed since the early 20th century (see for example [2–4] ). A social planner
is a hypothetical decision-maker who attempts to maximize some notion of social welfare. The
planner is a fictional entity who chooses allocations for every agent in the economy that maximize
a social welfare function subject to certain constraints. The welfare loss function used here serves
this purpose and has been widely used in studying COVID 19, as for example in [5] .

1



A.2 Epidemic Dynamics

We use the SEIR model framework while explicitly tracking deaths. The following equations de-
scribe the nonlinear dynamics of this model, in which each variable represents a fraction of the total
population.

Ṡt = −βt ItSt (S2)

Ėt = βt ItSt − σEt (S3)

İt = σEt − γIt (S4)

Ċt = δγIt − θCt (S5)

Ḋt = θCt (S6)
·
Rt = (1 − δ)γIt (S7)

where R is the fraction of the infected that recover and C is the fraction who become severely sick
and eventually die. Throughout, β denotes a transmission rate, σ is the incubation rate, γ is the
removal rate of which 1 − δ recover and δ transition to a severely sick state leading to new fatalities
given a death rate θ given severe illness. In this model, the basic reproduction number R0 is given
by:

R0 =
β0

γ
(S8)

and the time-varying effective reproduction number is given by:

Re(t) ≡ Rt = St
βt

γ
(S9)

We model the transmission rate βt as a function of three factors:

βt = βW − βN

(
1 − nt

nSS

)α

+ βΛ exp (−Λt) (S10)

where nt is the employment reduction relative to the maximum nSS. The formulation is motivated
as follows:

a. βW is the transmission rate when the economy is open, i.e., production and employment are
not restricted.

b. βN parametrizes the scale of the decline in transmission as activity falls (decline in nt
nSS

, em-
ployment relative to its steady state), using a power function with parameter α.

c. βΛ exp (−Λt) expresses the decline in transmission due to rapid learning over time by indi-
viduals after the outbreak begins over a characteristic time scale 1/Λ.

Thus, at time t = 0, when nt
nSS = 1 we get:

β0 = βΛ + βW (S11)

which is the transmission at the initial stage and corresponds to R0 = β0
γ .

After a period of time, which depends on the rate of decline Λ, individuals change their be-
havior, and when exp (−Λt) ≪ βW we get that the transmission rate (and hence Rt) rises with
employment:

βt = βW − βN

(
1 − nt

nSS

)α

(S12)

A.3 Macroeconomic model

The economy is modeled via a linear production function, with constant wages, and output is fully
consumed, where all state variables are monitored per-day. In the model, yt is GDP and ct is con-
sumption. The government imposes a lockdown policy Lt. Steady state (SS) employment (fraction

2



of daily hours worked) is 1, i.e., nSS = 1. Total population is also normalized to 1. The following are
the key relations:

yt = Ant (S13)
w = A (S14)
yt = ct = wnt (S15)

Next, we provide details on the factors that set employment nt.

Individual Utility Maximization Individual utility is given by:

Ut = u(ct)− v(nt) (S16)

There is positive utility from consumption and disutility from labor. Prevalent functional forms are:

u(ct) = ln (ct) (S17)

v(nt) = θ1+ζn
n1+ζn

t
1 + ζn

(S18)

We use an empirically based value of Frisch elasticity ζn = 4. In the optimal solution nt = 1
θ ; as

nSS = 1
θ = 1, we get θ = 1.

At steady state where nSS = 1 we get:

v(nSS) =
1
5

(S19)

such that

USS = ln (cSS)−
1
5

(S20)

= ln (w) + ln (nss)−
1
5

= ln (w)− 1
5

Out of steady state we have:

Ut = ln (w) + ln (nt)−
n5

t
5

(S21)

In the outbreak, there is an endogenous response of individuals to incident fatalities, Ḋt, so the
utility function is modified as follows:

Ut = ln (w) + ln (nt)−
1
5

(
nt

1 − b(Ḋt, t)

)5
− ln

(
1 − b(Ḋt, t)

)
(S22)

where b is the endogenous response.

Consequences for Employment The macroeconomic model assumes that employment is deter-
mined in two ways:

a. the planner imposes lockdowns Lt. This is set by equation (S1), i.e., by minimizing social harm
subject to all of the constraints.

b. the individual sets desired employment by utility maximization as discussed in sub-section
A.3.

We posit that the stricter reduction in employment – by lockdown or by the individual response
– dominates. Employment thus behaves as follows:

nt = 1 − max{b(Ḋt, t), Lt}). (S23)

3



A.4 Computing Welfare Loss In Equivalent Consumption Terms

We wish to convert welfare loss to equivalent consumption loss. Consider steady state and period
t welfare. Using Eqs. S20 and S21 we define welfare loss WL0 (nt) to be:

WL 0 (nt) = Uss − Ut = ln (w)− 1
5
−
[

ln (w) + ln (nt)−
n5

t
5

]
= − ln (nt)−

1
5

(
1 − n5

t

)
(S24)

So the inverse function WL0
−1 (WLt) converts welfare loss terms into an equivalent loss in

employment and consumption terms.
For example WL −1

0 (0) = 1, so nt = 1. There is no reduction in welfare; this corresponds to full
employment.

As WLt rises WL0
−1 (WLt) falls, so we define the corresponding employment and consumption

reduction, CL, as:

CL (WLt) = 1 − WL0
−1 (WLt) (S25)

This function maps WLt to the corresponding equivalent reduction in consumption (in %).
In our model WLt is the welfare loss, which is the integrand of the objective function :

WLt = (Dt + ϕIt)WLDt + (1 − Dt − ϕIt)WLLt + χ · Ḋt (S26)

In order to compute the equivalent consumption terms loss we compute

PDV CL =
∫ T

0
e−rt

(
1 − WL0

−1 (WLt)
)

dt =
∫ T

0
e−rt

1 − WL0
−1

 (Dt + ϕIt)WLDt
+ (1 − Dt − ϕIt)WLLt

+χ · Ḋt

 dt

(S27)

B Optimal Policy Identification

B.1 Optimal control algorithm

In line with formalism from theories of optimal control [6], the state equation has the form

ẋ(t) = ψ(x(t), Lt), (S28)

where t ∈ [0, t f ] is the time-variable for a given t f ∈ (0, ∞), x(t) ∈ Rm is the state variable and
Lt ∈ Rk is the input-control variable. In our model, we set m = 6, where x(t) represents the
state of the pandemic in time t. ψ is the function governing the pandemic dynamics. Additionally,
k = 1 as the input, Lt, corresponds to the reduction in employment. We assume that an initial
condition x(0) := x0 ∈ Rm is given and fixed. The optimal control problem is to compute a control
{Lt : t ∈ [0, t f ]} which minimizes the following cost functional,

J :=
∫ t f

0
Q(x(t), Lt)dt, (S29)

for a suitable cost function Q : Rm × Rk → R, subject to pointwise constraints of the form Lt ∈
L(t), where L(t) ⊂ Rk is a time-dependent compact, convex set. Additional constraints on the
input-control signal may be imposed such as piecewise continuity in the time-variable t. If the
input control L(·) satisfies all of those requirements, it is said to be admissible. Our cost function is
presented in Eq. S1, where J represents welfare loss, incorporating both the mortality impact of the
disease and the economic costs associated with employment reduction. L(t) is always the interval
[0, 0.25], indicating that the maximum possible employment reduction is 25%. The costate variable
p(t) ∈ Rm is defined by the following equation,

ṗ(t) = −
(

∂ψ

∂x
(x(t), Lt)

)⊤
p(t)−

(
∂Q
∂x

(x(t), Lt)

)⊤
, (S30)
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with the boundary condition p(t f ) = 0. We remark that the boundary condition p(t f ) is specified
at the final time t f , and not at the initial time t0 := 0 as for the state equation (S28). Therefore,
numerical computations of the costate have to be performed backwards in time after the state x(t)
has been computed for all t ∈ [0, t f ]. Throughout the forthcoming discussion, the time variable
t ∈ [0, t f ] is continuous. The term “computation of a time-dependent variable for all t ∈ [0, t f ]” im-
plicitly assumed computation over a given approximation grid.

A key element in the characterization of an optimal control is the Hamiltonian function H :
Rm × Rk × Rm → R, defined as

H(x, u, p) := p⊤ψ(x, u) + Q(x, u). (S31)

Given an admissible control Lt, let x(·) and p(·) be the state trajectory and costate trajectory, respec-
tively, associated with L(·). Given another admissible control, L̃(·), define the function J̃ : [0, 1] → R

in the variable λ as
J̃(λ) := J(L + λ(L̃ − L)). (S32)

Then under suitable assumptions [7], the one-sided derivative dJ̃
dλ+ (0) satisfies the following in-

equality,
dJ̃

dλ+
(0) ≤

∫ t f

0

(
H(x(t), L̃t, p(t))− H(x(t), Lt, p(t))

)
dt; (S33)

we note that here x(t) and p(t) are the state variable and costate variable, respectively, correspond-
ing to the input control L(·). This result implies the maximum principle whereby if L(·) is an
optimal control, then at almost every t ∈ [0, t f ], Lt is a minimizer of H(x(t), L̃, p(t)) over L̃ ∈ L(t).
The reason for this is that if the maximum principle is not satisfied at L̃(·), then a descent direction
for J(·) can be obtained from L(·) by L̃(·) satisfying the inequality

H(x(t), L̃t, p(t)) ≤ H(x(t), Lt, p(t))

for all t ∈ [0, t f ], and ∫ t f

0

(
H(x(t), L̃t, p(t))− H(x(t), Lt, p(t))

)
dt < 0

contradicting the supposition that L(·) is an optimal control. In the special case where L̃t is a point-
wise minimizer of H(x(t), L̃, p(t)) for all t ∈ [0, t f ], L̃(·) is a steepest descent direction.

The maximum principle leads us to the following iterative algorithm for the optimal control
problem.

Hamiltonian-based algorithm.
Fix a constant λ > 0 (to be used as a stepsize) and an initial control, L0(·).
Given a control Lk(·), k = 0, 1, 2, . . . , compute the next control, Lk+1(·), as follows.
Step 1: Compute (numerically, via an approximation) the state trajectory xk(·) defined by (S28), and
the costate trajectory pk(·) defined by (S30 ).
Step 2: For each t ∈ [0, t f ], compute a point L̃k(t) ∈ Rk satisfying

L̃k
t ∈ argmin{H(xk(t), L̃, pk(t)) : L̃ ∈ L(t)}. (S34)

Step 3: Set Lk+1(·) = Lk(·) + λ(L̃k(·)− Lk(·)). □

For the step size we chose λ = 0.01. In making this choice we err on the side of simplicity of
coding the algorithm while slowing down its convergence rate as compared to larger, variable step
sizes without guarantees of convergence but a faster approach towards regions of optimal control.
This choice was based on the realization that in a practical setting of pandemic management the
optimal control program would be executed, off line, once per several days or weeks.

Our functions
x(t) is the state of the pandemic in time t. It’s described by the fractions of the populations that are:
Susceptible, exposed, infected, recovered, severely sick, and dead. That is m = 6, and x(·) ∈ R6.
ψ(·) is the functions that govern the pandemic dynamics. We use the SEIR model, described in
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appendix A2.
Lt is the employment reduction in time t. That is, k = 1 and L(·) ∈ R.
L(t) is the possible employment reduction in time t. We set it to be the interval [0, 0.25].
Q is the integrand of our loss function, defined as the objective function in Eq. S1 . Therefore,
J := WL(Lt).

B.2 Feedback control algorithm

Due to the fragility of open-loop optimal control, it is a common practice in applications to first
compute an open-loop optimal control solution, use it to compute a corresponding output, then use
that output as the reference signal to be tracked in real time by the feedback control. Observe that
the formulation of the optimal control problem defined by Eqs. S28 and S29 makes no reference to a
system’s output, and it is up the the feedback-controller’s designers to choose an output according
to practical considerations including the effectiveness and efficiency of the control law.

A schematic for the closed-loop system is depicted in Figure S3. The reference signal ρ(t) is
the object of tracking by the output of the econo-epidemic system, ξ(t). The input to the econo-
epidemic system, Lt, is the output of the secondary controller, which has two inputs: the error
signal e(t) = ρ(t)− ξ(t), and the input error Lt − Lc

t , with Lc
t being the output of the PID controller.

The objective of the controller is to ensure that lim supt→∞ ||e(t)|| be small to within specifications.
The optimal control problem considered in this paper has the particular constraint that the input

signal Lt, representing a policy, be piecewise constant with a limited number of value-switchings
and lower bounds on the dwell-times (i.e., lengths) of constant-value periods. This constraint clas-
sifies the problem in the category of hybrid switched-mode optimal control [8], whose solution,
typically by computational means, may be complicated and time consuming due to the presence
of large numbers of local minima. An alternative approach is to migrate the task of guaranteeing
the constraint from the optimal-control’s algorithm to the design of the feedback control. What
makes this approach reasonable is the fact that for the considered optimal control problem, a suit-
able choice of the system’s output, ξ(t) = Rt, computed from an optimal control solution, has a
near-constant value throughout a large part of the time horizon for the problem (which is, just un-
der 1). Furthermore, the value of that constant is robust with respect to tested model-parameter
uncertainties.

The feedback control law that we chose is founded on a version of the Proportional-Integral-
Derivative (PID) controller [9]. In continuous-time systems, the commonly-used PID control has
the following form,

Lt = KPe(t) + KI

∫ t

0
e(τ)dτ + KD ė(t). (S35)

The designations “proportional”, “integral” and “derivative” refer to the three respective relation-
ships between e(t) and Lt defined by Eq. S35. Thus, the first term, KPe(t), is the proportional term,
the second term is the integral control, and the third term is the derivative element; the constants
KP, KI and KD, all positive, are their respective gains.

An improvement of the PID controller may be achieved by directly controlling L̇t instead of
Lt [10]. Taking derivatives with respect to time in Eq. S35, the resulting control has the form

L̇t = KP ė(t) + KIe(t) + KD ë(t). (S36)

While the various terms in Eq. S36 are functions of continuous time t, they may have to be computed
via discrete-time approximations. We use the following approximation due to its computational
efficiency:

Lk − Lk−1 = KP(ek − ek−1) + KIek−1∆t + KD(ek − 2ek−1 + ek−2)/∆t, (S37)

k = 1, 2, . . . , K f ; here ek := e(k∆t), ∆t is a fixed sampling period, and Lk acts to approximate Lk∆t.
The range of k is {0, . . . , K f } where K f := [t f /∆t] is the largest integer not exceeding t f /∆t, L0 is a
given initial condition, and it is assumed that ek, k = 0, 1, . . . , [t f /∆t] can be read from the system at
time k∆t. We applied the discrete-time PID controller defined in Eq. (S37) with ∆t = 0.01.

In applying the PID controller (Eq. S36) via the approximation defined by Eq. S37 to the epi-
demic social planner problem, we took the input control to be the employment relative to its pre-
pandemic steady state, namely Lt := nt (see Eq. S10 with nSS = 1), and the system’s output ξ(t)
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to be the effective reproduction number of the epidemic, Re(t). The choice of Lt is reasonable since
it provides the planner with a direct policy control influencing both the mortality rate and welfare
loss. Regarding the choice of the system’s output, simulation-based evidence has shown that ac-
cording to the open-loop optimal control, Re(t) converges to and then maintains a near-constant
value slightly less than 1, for a significant part of the simulation horizon.

The configuration of the feedback system is depicted in Figure S3. Note that the PID controller
is not used directly to shape the input Lt of the econo-epidemic system, but rather serves to com-
pute Lc

t from the tracking-error signal of the econo-epidemic system, e(t) := ρ(t) − ξ(t). This
computation, performed in real time, is defined by Eq. S36 and approximated by Eq. S37. The
resulting signal Lc

t typically is continuous, or at least piecewise continuous, in contrast with the in-
put to the econo-epidemic system, Lt, which has to satisfy the aforementioned piecewise-constant
constraint. This constraint is ensured by the controller in the lower loop of the figure, marked as
the “secondary controller”. It is a time-varying system with two inputs, the tracking-error signal
e(t) := ρ(t)−Re(t) as well as the input-error signal Lt − Lc

t , and a single output, Lt+ .

Definition of the secondary controller
The purpose of the secondary controller is to ensure that the input signal to the econo-epidemic
system, Lt, satisfies the piecewise-constant constraint. To describe its dynamics, we denote by Pj,
j = 1, 2, . . . , the jth maximal time-interval (period) during which L(·) has a constant value, labeled
a constant-value period. Let tj ∈ [0, t f ) denote the starting time of Pj, and observe that Pj = [tj, tj+1].

The constant value of Lt throughout t ∈ Pj, and the end time-point of Pj, tj+1, are defined as
follows. Given a t-dependent function EL(t) > 0, a constant Eτ > 0, and a t-dependent function
Ed(t) > 0, respectively labeled as input-error threshold, tracking-error threshold, and dwell-time thresh-
old. Consider the starting time of Pj, tj, for some j = 1, 2, . . ., such that tj < t f . Recall that the
PID controller runs in real time (or, better to say, approximates a real-time computation by using a
given finite grid). We set Ltj = Lc

tj
, which determines that Lt ≡ Lc

tj
∀t ∈ Pj. Meanwhile, Lc

t keeps
on changing according to the computations by the PID controller. The constant-value period, Pj, is
terminated in response to one of the following two events, whichever occurs first:

For t ∈ Pj,

1. |Lt − Lc
t | ≥ EL(t) and |e(t)| ≥ Eτ and t − tj ≥ Ed(t),

2. t = t f .

In case of Event 1, we set tj+1 = t and reset Ltj+1 = Lc
tj+1

, while in case of Event 2, we set tj+1 = t f .
Observe that the input error Lt − Lc

t is reset to zero at the starting time of every constant-value
period Pj, j = 1, 2, . . ..

We chose the time-dependent function EL(t) to be reset at the start of every constant value period
Pj, namely at time tj, to a given base value bL := EL(0) that is independent of j = 1, 2, . . .. Thereafter
EL(·) is monotone decreasing during an early part of Pj, and monotone non-increasing throughout
Pj, thereby guaranteeing that EL(t) jumps upwards to the value bL at every time tj, j = 1, 2, . . .. This
form of the input-error threshold EL(·) is designed to require larger input errors for terminating Pj
sooner rather than later after its starting time. This, in turn, would tend to limit from below the
dwell times (lengths) of constant-value periods hence potentially limiting from above their total
number throughout the interval t ∈ [0, t f ]. On the other hand, the time-dependent function Ed(t)
was chosen to be monotone increasing throughout the interval [0, t f ], and have no resets. This was
designed to permit more frequent switchings of constant periods early in the interval [0, t f ] rather
than late, which may be useful shortly after the outbreak of the pandemic, when the effects of
modeling errors on loop signals can be large and costly as compared to later stages of the epidemic.

The specific functions EL(·) and Ed(·) as well as the value of Eτ were chosen based on simula-
tions of the system with various parameters. The resulting parameters of the PID controller are

KP = 0.05, KI = 0.6, KD = 0.00001. (S38)

For the secondary-control parameters, the threshold function EL(·) has the form

EL(t) = bL − aL(t − tj) (S39)
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throughout the first part of Pj, where bL := EL(tj) is the base level at the start of Pj and aL > 0 is
a given constant. EL(·) is switched to a constant mode in the event that it reaches a given lower
threshold level θL > 0, and it maintains that level until the end of Pj. Thus,

EL(t) = max{bL − aL(t − tj), θL}

throughout Pj, for given bL > 0, aL > 0, and θL > 0. We used the parameters bL = 0.1, aL = 0.001,
and θL = 0.03, and Eτ = 0.03. Further, the threshold function Ed(t), t ∈ [0, t f ] is an affine function
of the form

Ed(t) = adt + bd, (S40)

for a constant ad > 0 and a base level bd > 0. We chose ad = 0.1 and bd = 14.
The basic time unit for the problem under consideration is a day, and the end time is t f = 630

days. We used the discretized PID controller defined by Eq. S37 with ∆t = 0.01, hence it, performs
a computation every 14.4 minutes. The secondary controller performs on the same schedule as the
PID controller.

Regarding other quantities of the model, by Eqs. (S8) and (S9) the output of the econo-epidemic
system is

ξ(t) := Re(t) = St
βt

γ
,

where St is the susceptible fraction of the population, βt is the pandemic’s transmission rate defined
by Eq. S10, and γ, the inverse of infectiousness period, taken at γ = 0.25 (see Supplementary
Table S5). The total duration of the simulated epidemic is t f = 630 days. The simulation results,
depicted in Figure 4, indicate a substantially better tracking of the feedback control over an open-
loop optimal control.

C Calibration

To provide a recent, familiar baseline, we calibrate the model to fit the U.S. economy as impacted
by COVID19 [11]. Throughout, we work in daily terms. We calibrate the baseline used for simula-
tion, while noting that calibrated parameters represent a plausible benchmark for our exploration
of social planning policies for future pandemics. As a result, our evaluation of optimal policies
includes simulations in parameter regimes that depart from this benchmark – sometimes in sub-
stantial ways. We then evaluate the extent to which social planning policies function effectively in a
broad range of parameter choices while evaluating the possibility that the planner is uncertain and
likely incorrect in their estimation of parameters before designing policy rules.

C.1 Calibration of the Epidemiological Model

Estimates of the latency period (1/σ) and the infectiousness period (1/γ) rely on studies from early
in the COVID-19 pandemic [12, 13] . Their findings are confirmed by studies on infector-infectee
pairs [14]. The Infection Fatality Rate (IFR), denoted δ, is based on estimates from the Imperial
College COVID-19 Response Team [15] and a meta-analysis findings [16]. These sources estimate
the IFR at 0.8%. The meta-analysis reports that the IFR of the disease across populations is 0.68%
(0.53% − 0.82%), though it is noted that due to high heterogeneity, this might be an underestimate
of the true IFR [16]. The typical duration of transitions from I to D is set at 11 days such that
the average time between infection to death is 18 days, including both the incubation and infectious
periods; we note that this period is consistent with but somewhat shorter than estimates for COVID-
19 of closer to 21 days when including the distribution from infection to onset of symptoms and
from symptoms to death [17].

C.2 Estimation-based Calibration of Transmission

We employ daily U.S. data to estimate key relations and use the point estimates to calibrate the
model. The data series used are daily deaths, daily employment, lockdown measures, and the
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derived transmission rate. We estimate the equation for βt :

βt = βW − βN

(
1 − nt

nSS

)α

+ βΛ exp (−Λt) (S41)

The results are shown in Table S2. The estimates imply the following. When Nt
NSS = 1 i.e., the

economy is not locked and there are no sick or dead, at time t = 0:

β0 = βΛ + βW = 0.339 + 0.376 = 0.715

and so R0 = β0
γ = 2. 86 Given the estimated rate of decline, Λ = 0.12, in a little less than a month

individuals adjust their behavior to the presence of the disease; subsequently, when exp (−Λt)
≪ βW we get:

βt = βW − βN

(
1 − Nt

NSS

)α

This implies βt drops endogenously below βW as a function of employment, yielding reproduction
parameter Rt variation between 1.5 and 0.8.

C.3 Calibration of the Economic Model

C.3.1 Discounting.

We posit a 4% annual discount rate (r = 0.04), converted to daily terms (used by individuals and
consequently by the social planner).

C.3.2 The value of ϕ.

As assumed in prior work [18], we assume that anyone who has any symptoms self-isolates and
does not work (ϕ = 1).

C.3.3 The endogenous response, lockdown policy, and employment

First, we follow the functional form proposed by previous work [19, 20] and postulate that the
endogenous response function g(Ḋt, t) is given by:

g(Ḋt, t) = κtḊt (S42)

where

κt = κ (1 − (1 − φκ) · ft) (S43)

ft = normal cd f

(
t − µ f

σf

)
(S44)

where normal cd f is the CDF of the normal distribution, κt is the time-varying parameter of the ef-
fects of the individual response on employment, and the parameters µ f , σf , φκ , and κ are estimated.
The parameter κt express the idea that the endogenous individual response exhibits time decay ft.

Next, we note that there is an overlap of compliance with lockdown and the endogenous re-
sponse, so we use the maximal response as follows:

Nt

Nss
= 1 − max(Lt, κtḊt) + εt (S45)

We non-linearly estimate equation S45 using U.S. data on Nt
Nss , L, and Ḋt in the period from

March 1, 2020 to February 28, 2021. The results are as follows:

Nt

Nss
= 1 − max(Lt, κtḊt) + εt
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Finally, we take into account that without restrictions, employment would drop significantly.
This can even reduce employment to levels below what is usually regarded as essential employment
plus work from home. Empirical estimates for the U.S. indicate that the minimum employment
level under the most stringent lockdown measures was around 0.65 − 0.70 of full employment [21,
22]. We therefore calibrate this level of employment to be 0.68 and set L = 0.32.

C.3.4 Employment, Wages, and the Utility Function.

For the planner problem and the simulations we further need to calibrate w and A. To do so we use
two U.S. data points, as in a prior research [23]: the representative person earns an annual income
of $58,000, using the 2019 estimate from the U.S. Bureau of Economic Analysis.

Thus, pre-epidemic, which we call steady-state (SS), when g(Ḋt, t) = 0 we get that the daily
income w e is:

w =
58000

365
= 158.9 (S46)

We set A = w.

C.3.5 Value of reduced mortality risk.

The planner objective includes the term PSS · Ḋt · VRMRU , where VRMRU is the value of reduced
mortality risk. We determine its value and show how it fits in the social welfare function.

The central estimate for the monetary value of reduced mortality risk lost to COVID-19, VRMRUSD,
is 3.81 million USD, based on the EPA estimate of 270, 000 USD per year and an estimate of 14.1 years
of remaining life on average [24].

To include these values in the social welfare function, we apply an oft-used methodology [25],
as follows: denote the value of reduced mortality risk in utility terms by VRMRU , so that the
event of death in the model is associated with utility loss of VRMRU . Individuals are indifferent
between paying SHAREC of their flow consumption and avoiding the risk ε of losing VRMRU , and
not paying SHAREC of their flow consumption and carrying the ε risk of losing VRMRU . Given
the no-epidemic steady-state utility, this logic means that VRMRU should satisfy the following
indifference condition:

ln (ct)− n5
t

5
r

− εVRMRU =
ln ((1 − SHAREC)c)−

n5
t

5
r

(S47)

where

SHAREC =
εVRMRUSD × r

CUSD

365

(S48)

The representative agent would be willing to pay SHAREC so as not to lose VRMRU with an ε
risk of death; the payment, SHAREC, is given by equation S48, paying εVRMRUSD × r each day,
where r is the daily discounting rate is r.

Assuming SHAREC ≪ 1 we get − ln (1 − SHAREC) ≃ SHAREC and using our modeling of
C = Y (which we have taken to be 58, 000 USD), we get:

εVRMRU =
SHAREC

r
=

εVRMRUSD×r
YUSD

365

r

VRMRU =
VRMRUSD × 365

YUSD (S49)

Thus the VRMRU value we get is 23, 977 ≃ 24, 000 (also denoted χ) for the baseline VRMRUSD

value of 3.81 million USD.

10



C.3.6 Vaccine Arrival Rate

The term f (TV) is the probability density function of the availability of a vaccine at time TV . This is
an important term as it sets the horizon for the problem, acting as a hazard rate for leaving the state
of the pandemic. It is an expression of the essential risk and uncertainty embodied in the planner
problem. Note that were we to model an arrival time known with certainty, not only would an
important real world aspect be removed, but such modeling might create an artifact in the optimal
plan. The planner may enable an outbreak shortly before vaccine arrival, relying on the vaccine to
eradicate it. Such a plan is not robust to delays in the arrival time. Relative to the interest rate r,
expressing time preference, f (TV) plays the major quantitative role in discounting future streams.

We assume the Gumbel distribution, justified by the following logic. We assume that the arrival
of the vaccine is a result of simultaneous competition among many firms. The time of arrival is the
minimum development time across these firms. Note that over the course of 2020-2022 over 110
vaccines were in clinical trials and dozens more in pre-clinical evaluations. The distribution of ar-
rival time is then well approximated by a Gumbel distribution [26], which is a member of the family
of extreme value distributions. Specifically, it is used for modeling the minimum of a sample from
many distributions, including exponential, logistic, and normal distributions. Under mild regular-
ity conditions, it is suitable to be a model for a sample minimum even when the distributions from
which the sample is drawn are unknown. In our setting, we remain agnostic about the distributions
of vaccine development time by individual firms.

In terms of the model, TV refers to the time of sufficient vaccination. With logistics, production
times, gradual take-up rates, etc. an ex-ante expected 540 days seems reasonable relative to the
March 2020 start date of the epidemic in the U.S.

The cumulative distribution function G (x) of a Gumbel distribution is defined over the real
numbers and parametrized by a location parameter µG and a scale parameter σG :

G(x; µG, σG) = 1 − exp
(
− exp

(
x − µG

σG

))
(S50)

We anchor the distribution’s parameters (µG, σG), by positing that the mean of the distribution
is 540 days, and that the probability of sufficient vaccination before day 360 is only 1%. These
assumptions engender two linear equations:

E(Gumbel (µG, σG)) = µG − EulerGamma · σG = 540
Q(Gumbel (µG, σG) , q) = µG + log (− log (1 − q)) · σG = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540 and Q(q = 0.01) = 360
leads to the solution of µG = 565.83, σG = 44.74.
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D Supplementary Tables

function description formal representation

f (TV) Gumbel distribution for vaccine arrival f (TV ; µTV , σTV ) = 1 −
[
exp

(
− exp

( x−µTV
σTV

))]
b(Ḋt, L, t) employment response max(κtḊt, L)

κtḊt endogenous response κtḊt = κ (1 − (1 − φκ) · ft) Ḋt

ft = normal cd f
(

t−µ f
σf

)
Lt lockdown policy constraints L ⩾ Lt ⩾ 0

Table S1: Econo-epidemic functions to coupled vaccine arrival, employment, endogenous response,
and constraints.

βΛ Λ βW βN α

0.339∗∗∗ 0.12∗∗∗ 0.376∗∗∗ 0.53∗∗∗ 0.69
(0.05) (0.01) (0.05) (0.12) (0.31)

Table S2: Estimates of transmission relevant parameters given model fits, such that R2 = 0.74,
RMSE = 0.0307, and n = 351 – complete details of model fitting are available in [11]. Elements
are point estimates with standard errors in parentheses, and significance noted as ∗p < 0.10,∗∗ p <
0.05,∗∗∗ p < 0.01.

Parameter Description Numerical value

Eu(t) Input error threshold
max{0.1 − 0.001(t − tj), 0.03}, t ∈ Pj,

for every constant period Pj, j = 1, 2, . . .
Ed(t) Dwell time time threshold 0.1t + 14

Eτ Tracking error threshold 0.03
KP Proportional control gain 0.05
KI Integral control gain 0.6
KD Derivative control gain 0.00001

Table S3: Parameters for the PID control algorithm. Data presented here was mentioned following
the discussion of the PID algorithm (the space between equations S38 and S40, inclusive) and it is
provided here in order to complete the summary discussion.

κ φκ µ f σf

30, 500∗∗∗ 0.18∗∗∗ 245∗∗∗ 27.5∗∗∗

(0.0001) (0.01) (2.36) (2.68)

Table S4: Economic model parameterization based on U.S. data during the period of March 1, 2020-
February 28, 2021. The tables report point estimates with standard errors in parameters in paren-
theses, noting that R2 = 0.99, RMSE = 0.0139, and n = 365. Significance levels are noted as
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The complete model fits are available in [11].
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parameter description numerical value source
r daily interest rate 0.04

365 prevalent assumption
ϕ fraction of ill not working 1 assumption
χ weight assigned to death flows 24, 000 VRMR est.
γ inverse of infectiousness period 1

4 epi lit
σ inverse of latent period 1

3 epi lit
δ death rate 0.008 clinical lit
θ inverse of period I to D 1

11 clinical lit
βW baseline transmission rate 0.376 est.
βn employment effects scale parameter 0.53 est.
α power of employment effects function 0.69 est.

βΛ time effects scale parameter 0.339 est.
Λ exponential parameter in time effects 0.12 est.

w = A daily wages, productivity 158.9 data
κ scale parameter endogenous response 30, 500 est.
φκ parameter endogenous response 0.18 est.
µ f mean of fatigue function 245 est.
σf std of fatigue function 27.5 est.

µTV location parameter of Gumbel distribution 565.83 est.
σTV scale parameter of Gumbel distribution 44.74 est.
L maximum restriction of economy 0.32 epi lit
T planner’s horizon 630

Table S5: Estimated disease parameters used in the econo-epidemic model derived in part from [11].
Note that the text uses the variables t f and T interchangeably to denote the planner’s horizon.
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E Supplementary Figures

 

a b 

d c 

Figure S1: Baseline outbreak dynamics, endogenous response, and fatalities in the absence of optimal, policy-driven
employment reduction. Dynamics depict cases of R0 = 3.156 in a no employment reduction context (panels (a) and (b)) and
with relaxed employment reduction (panels (c) and (d)). In both context, as death rates rise, individuals reduce interactions,
sometimes more stringently than government-imposed employment reduction (whenever the blue curve is higher than the
black curve). In (a)-(b), no reduction policy is imposed, leading to rapid spread and increasing deaths until the population
reacts. In (c)-(d), the imposed restrictions are insufficient, prompting tighter individual measures as death rates escalate.
Over time, the anticipated arrival of vaccines weakens the individual response, evident in both scenarios, where later larger
death spikes elicit a diminished endogenous reaction. The cumulative fatalities per 100,000 in the two scenarios are 378.08
per 100,000 in case (a)-(b) and 280.02 per 100,000 in case (c)-(d).
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Figure S1: Time series  

• The policies outlined represent the optimal stepwise approach for basic transmission rates 

(βw) of 0.3, 0.376, and 0.45, assuming accurate knowledge of disease parameters. 

• As the basic transmission rate increases, the disease spreads more rapidly, necessitating a 

more stringent optimal policy.  

• However, even with these measures, increased rates of infection and mortality may still occur 

as the basic disease transmission rises, due to the severe economic repercussions of overly 

aggressive employment reductions. 

• The optimal policy aims to maintain the effective reproductive number (R) close to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Econo-epidemic dynamics given optimal stepwise response policies. The policies outlined represent the op-
timal, open-loop stepwise approach for basic transmission rates (βW ) of 0.3, 0.376, and 0.45, respectively for low, medium
and high cases assuming accurate knowledge of disease parameters. As the basic transmission rate increases, the disease
spreads more rapidly, necessitating a more stringent optimal policy. However, even with these measures, increased rates of
infection and mortality may still occur as the basic disease transmission rises, due to the severe economic repercussions of
overly aggressive employment reductions. The optimal policy appears to maintain the effective reproductive number (Re f f )
close to 1.
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Figure S3: The relationship between the feedback controller and the controlled system.

  

 

 

 

 

 

 

 

 

Figure S4: outcomes of policies when disease employment impact is different from 

assumed 

This Figure presents similar ideas to Figure 4, but with respect to variations in  
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Figure S4: This Figure presents similar results to as in Figure 4, but with respect to variations in βN instead of variations in
βW . The optimal, open-loop policy is sensitive to misspecification of the impact of employment on the spread of the disease,
whereas the feedback, closed-loop policy approach is not. The policy using feedback control maintains death toll (a), GDP
loss (b) and WL (c) in levels that are close to optimal across all levels of employment impact.
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