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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/odedneeman/ Infectious disease outbreaks with pandemic potential present challenges for mitigation and control. Policy-
Optimal-Pandemic-Control makers must reduce disease-associated morbidity and mortality while also minimizing socioeconomic costs of

interventions. At present, robust decision frameworks that integrate epidemic and macroeconomic dynamics

;ZM;EZZ nomics of epidemics to inform policy choices, given uncertainty in the current and future state of the outbreak and economic
GDP loss activity, are not widely available. In this study, we propose and analyze an economic-epidemic model
Health outcomes to identify robust planning policies that limit epidemic impacts while maintaining economic activity. We
Optimal and feedback control compare alternative fixed, dynamic open-loop optimal control, and feedback control policies via a welfare
Pandemic response loss framework. We find that open-loop policies that adjust employment dynamically while maintaining a

flat epidemic curve outperform fixed employment reduction policies. However, open-loop policies are highly
sensitive to misestimation of parameters associated with intrinsic disease strength and feedback between
economic activity and transmission, leading to potentially significant increases in welfare loss. In contrast,
feedback control policies guided by open-loop dynamical targets of the time-varying reproduction number
perform near-optimally when parameters are well-estimated, while significantly outperforming open-loop
policies whenever disease transmission and population-scale behavioral response parameters are misestimated
— as they inevitably are. Our study provides a template for integrating principled economic models with
epidemic scenarios to identify policy vulnerabilities and expand policy options in preparation for future
pandemics. Across disease scenarios, we show that policies that temporarily limit economic activity and disease
transmission reduce both disease-driven mortality and cumulative loss of economic activity. Our study suggests
that future preparedness depends on feasible, robust, and adaptive policies and can help avoid false dichotomies
in choosing between public health and economic outcomes.

1. Introduction means to reduce rates of new infections (Hellewell et al., 2020; Atkeson,
2021; Atkeson et al., 2021). Model-inferred estimates suggest that ~

Emerging and re-emerging infectious diseases threaten global health 3.1 million deaths were averted in 11 European countries between
and socioeconomic well-being (Christakis, 2020; Ferguson et al., 2020). February-May 2020 due to national lockdowns (Flaxman et al., 2020),
In response to the potential catastrophic threat of COVID-19, gov- while social distancing policies in China, South Korea, Italy, Iran,
ernments rapidly imposed social distancing and/or lockdowns to re- France, and the United States led to more than 61 million averted cases
duce contacts between susceptible and infectious individuals (including between February—-April 2020 (Hsiang et al., 2020). However, such

those who may be unaware they are infected Gandhi et al., 2020) as a counterfactuals come with significant caveats. First, baseline epidemic
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Fig. 1. Schematic of the econo-epidemic modeling framework with epidemic dynamics, macroeconomic model of welfare loss, endogenous response, and feedback
with a social planning problem. The top section provides an overview of the underlying econo-epidemic model. The bottom section provides an overview of the
social planning process that integrates economic and public health impact as a means to develop optimal policies (both open- and closed-loop) to minimize
welfare loss through modification of employment reduction policies. Full specification of the epidemic model dynamics, economic model structure, control
theoretic approach, policy planner optimization, and disease parameters are found in Supplementary Text A.

models do not typically integrate behavioral change (and/or alternative
mitigation steps) that could lead to reduction in transmission and
fatalities (Weitz et al., 2020). Second, even if early transmission is
averted, subsequent relaxation of policies can lead to rapid resurgence
of infections and fatalities (Du et al., 2023). Third, societal-scale lock-
downs impose health costs, decreasing the frequency of regular clinical
care visits including screening for cancers (McBain et al., 2021), while
increasing social isolation that impacts the mental health of children
and adults (Moreno et al., 2020).

Local, regional, and national lockdowns also come with substantive
socioeconomic costs that are the subject of ongoing debate (Macedo
and Lee, 2025). In macroeconomic terms, lockdowns reduce economic
activity due to production declines and decreases in productivity, losses
of revenue, and business closures that ripple across different economic
sectors. People and policymakers are still dealing with the aftermath of
lockdowns. For example, lockdowns are hypothesized to have fueled
a burst of inflation (Jorda et al., 2022) driven, in part, by supply-
chain disruptions. Likewise, changes in the labor market induced by the
pandemic, including increases in remote work, shifts in jobs, industries,
and employment patterns, and shifts in market demand have continued
to impact economic productivity and gross domestic product world-
wide (Amiti et al., 2024; Harding et al., 2023; Autor et al., 2023). In a
2024 public forum (Williams and Reis, 2024), the Federal Reserve Bank
of New York President John Williams expressed dissatisfaction with
econo-epidemic models. Inadequately integrating principled economic
models with epidemic scenarios generates vulnerabilities in policy
responses that prioritize one of health or economic outcomes at the
expense of the other. As a result, there are unresolved questions on
the links between epidemic dynamics, policy response, and economic
impacts spanning increases in inflation, supply chain dilemmas, and
changes in the labor market (Jorda et al., 2022; Amiti et al., 2024;
Harding et al., 2023; Autor et al., 2023).

This paper addresses the gap between public health policies that
aim to decrease the morbidity and mortality associated with disease
outbreaks, and social planning policies that aim to stimulate and sustain
economic activity. In doing so, we integrate both sets of goals in a
common valuation framework and ask: what feasible policies minimize
health impacts while maximizing economic activity? To address this

question, we develop a social planning policy analysis framework that
(i) includes realistic, feasible policy plans that account for lags in im-
plementation and discrete policy periods; (ii) utilizes a common ‘value
of reduced mortality risk’ (VRMR) framework for jointly evaluating
the macroeconomic and public health effects of policy objectives —
VRMR quantifies the equivalent substitution between averted deaths
and money (Simon et al., 2019); (iii) accounts for behavioral response
and the lack of precise information on (re)emerging diseases. We use
this framework to evaluate three classes of policy types: (i) fixed control
policies (that predefine interventions and do not change in time); (ii)
dynamic open-loop optimal control policies (that are dynamic in time
but predetermined at the outset); and (iii) feedback control policies
(that are dynamic in time and are adjusted during the outbreak based
on real-time measurements). By integrating a common valuation frame-
work and evaluating policies through commonly measured indicators of
disease impact, we explore when and how policy planners can feasibly
achieve nearly optimal population-scale epidemic and economic objec-
tives in the face of persistent uncertainty regarding transmission and
responses at individual scales.

2. Results
2.1. Econo-epidemic modeling framework

We developed an integrated econo-epidemic modeling framework
amenable to a social planning problem that can be used to iden-
tify ‘optimal’ policies given variation in disease transmission, behav-
ioral response, and economic output (Fig. 1). To do so, we utilize a
Susceptible-Exposed-Infectious-Recovered/Removed (SEIR) epidemic
modeling framework to represent disease spread at population scales
(full equations in Supplementary Information (SI) Text A). The time
varying incidence, g,S1, given the susceptible fraction .S and infectious
fraction I is modulated by the transmission rate

a
B = Pw — Px (1—i> + By exp (—A1) &
nss
which is driven by a combination of factors: (i) baseline interactions
when the economy is open (#y;, +/,); (ii) rapid behavioral adaptation of
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Fig. 2. Optimal fixed employment reduction policies reduce welfare loss, balancing impacts of cumulative fatalities and reduction in GDP. Panels (A)-(C) show
the outcome of fixed employment reduction (on the x-axis) in terms of fatalities (per 100,000), GDP loss (%), and % welfare loss, respectively. The three curves
in each panel denote outcomes given baseline (black, R, = 2.86, #,, = 0.376), elevated (red, R, = 3.156, #,, = 0.45), or reduced (blue, R, = 2.556, B, = 0.3)
disease transmission conditions, consistent with variation in early estimates of COVID-19 strength (Park et al., 2020b). Likewise, Panels (D)-(F) show modulation
of the impact of employment reduction on transmission using the disease parameters in the black curve conditions in Panels (A)-(C), given more impactful (pink,
Bn =0.6), and less impactful (orange, f = 0.4) conditions. The baseline employment impact is when #, = 0.53. For each scenario in Panels (C) and (F) there is
an optimal, fixed employment reduction policy which corresponds to the point at which welfare loss is at its minimum.

the population over a short time scale (1/A4) uncoupled to employment
levels that reduces transmission by §, — this captures the initial learning
phase after the outbreak onset; (iii) endogenous behavioral response
arising from individual-level decisions not necessarily mandated by
policy (e.g., working from home, masking, and improved ventilation in
the case of respiratory diseases); (iv) policy-induced dynamic reduction
in transmission. The realized employment level », relative to the steady-
state economy ngg leads to a reduction in transmission parameterized
by By and an exponent a. The resulting time-dependent effective
reproduction number is therefore R, = S,%, where y is the removal
rate of infectious individuals.

The disease model is coupled to a macroeconomic model in which
the gross domestic product (GDP) is driven by a linear production
function tied to employment, assuming constant wages and that out-
put is fully consumed (see SI Text A). Employment is influenced by
(i) individual-level economic activity guided by utility maximization
linked to the severity of the disease outbreak, b(D,,t), which we refer
to as the endogenous behavioral response, and (ii) a social planner that
imposes a level of preferred employment reduction, L,. We assume that
the realized employment reduction is the maximum of these two effects,
ie.,

n, = 1 — (max{b(D,,1), L,}). 2

In this combined econo-epidemic modeling framework, the objective
of the central planner is to minimize welfare loss WL (L,) caused by

the disease, balancing the death toll with the economic costs (i.e., cu-
mulative work hours, see SI Text A). Welfare loss is a function of the
policy L, equivalent to the fractional employment reduction — which
typically exceeds the endogenous response. Welfare loss is measured
by economic utility/welfare units and is nonlinearly related to wages,
level of economic utility, the death toll, and the disutility from working.
Throughout, we consider the social planning problem over a time
horizon T in which we expect the large-scale dissemination of effective
vaccines (Supplementary Table S5).

2.2. Evaluation of fixed employment reduction policies to minimize welfare
loss during a pandemic

In the absence of social planning interventions, an initially small
fraction of infected individuals will catalyze an outbreak leading to
transient reduction in employment due to utility maximization via
the endogenous behavioral response. This scenario (Supplementary
Figure S1) leads to large-scale outbreaks and significant loss of life. It
also provides the baseline for evaluating alternative, fixed economic
reduction policies intended to reduce welfare loss. To generate the
baseline dynamics associated with basic reproduction number R, we
consider variation in fixed employment reduction policies across a
continuum ranging from fully open to a maximally restricted economy
(econo-epidemic model parameterization in Supplementary Table S5).
Employment reduction reduces cumulative fatalities while increasing
economic loss. We identify an optimal, intermediate lockdown level
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corresponding to a fixed policy that minimizes welfare loss compared to
viable alternatives (see minima in welfare loss in the top panels of Fig.
2). Variation in either the intensity of baseline transmission (due to dif-
ferences in disease features leading to changes in R)) or the efficacy of
employment reduction on transmission lead to different optimal, fixed
employment reduction policies (Fig. 2 bottom). Typically, increases
in disease intensity and/or decreases in the efficacy of employment
reduction on transmission increase the welfare loss associated with
fixed, optimal policy responses. Hence, insofar as disease intensity and
the link between employment reduction and transmission are known
with certainty, there exists an optimal fixed response that can be
planned in advance.

2.3. Open loop control policies outperform fixed lockdown policies in min-
imizing welfare loss during pandemics

We sought to identify and characterize optimal open loop, time-
dependent policies given continuous variation in employment reduction
levels n,, rather than fixed employment reduction policies as explored
in the previous section. To do so, we pose and solve an optimal
control problem using a robust steepest-descent algorithm based on
the maximum principle (detailed in the Supplementary Information).
We utilize the employment reduction level, n,, as the control variable
accessible by the policy maker which influences transmission and the
effective reproduction number. Fig. 3 panels (a-c) and (d-f) compare
consequences for welfare loss and optimal control solutions n,.(f) for
low, medium, and high basic transmission cases, spanning R, ~ 2.6,
2.9, and 3.2 respectively. In each case, the optimal control algorithm
identifies time-dependent changes in employment reduction (see Sup-
plementary Figure S2 for disease dynamics, R,,,, and welfare loss).
Initially, the economy is restricted with significant economic cost.
Given low prevalence (and low mortality), the rapid learning period
reduces transmission (e.g., via masks, social distancing, and crowd
avoidance), leading to a reduction of R, , close to, but slightly above
1. Then, exponential increases in disease burden drives a second phase
of reduced employment that exceeds employment reduction expected
through the endogenous response alone. Hence, the open loop optimal
control policy reduces R, slightly below 1. Finally, the expected
arrival of an effective vaccine disseminated at high coverage allows
the optimal planner a means to reduce restrictions. These three phases
appear most evidently in the high disease scenario, but are present in
each of the low, medium, and high transmission scenarios in the opti-
mal continuous policy. The equivalent total welfare loss for the optimal
time-dependent policy is shown as a function of R, in panels (a)-(c). We
also confirm that these time-dependent policies could be implemented
feasibly, i.e., by restricting the interval length during which a policy
could be changed. In practice, we offer the planner limited flexibility,
showing that 3 policy regimes are sufficient for an 18-month inter-
vention period. The optimal piecewise constant curves (i.e., ‘optimal
stepwise policies’) are paired with each optimal continuous policy in
panels (d)-(f), closely mimicking the optimal continuous policy both
in shape and in performance. Notably, the optimal time-dependent
policies (whether continuous or stepwise) each identify nearly the same
level of employment reduction. However, the time at which the optimal
control algorithm identifies the appropriate moment to shift between
policies (initial, restricted, relaxed) varies with the underlying disease
strength (see Supplementary Figure S2). This variation also suggests
that misestimation of disease strength during the planning policy could
lead to mismatched responses.

2.4. Fragility of optimal control policies given uncertainty

Optimal control problems can be sensitive to misspecification of
parameters, especially when applied to nonlinear dynamic systems
with the potential for (transient) exponential growth (Morris et al.,
2021). Hence, we set out to evaluate the sensitivity of performance, as

Epidemics 53 (2025) 100873

measured in terms of welfare loss, given solutions of the optimal control
algorithm for parameters 6,,, when the disease outbreak is character-
ized by 8, # 0, r- As above, the optimal control problem is solved
using a model-based, open loop, offline computation yielding time-
dependent policies for transmission that can be mapped to equivalent
employment reduction policies n,. Fig. 4 highlights the sensitivity of the
optimal time-dependent policy to misspecification of parameters. The
purple curves in panels (b)-(d) show the difference between the death
toll, GDP loss, and welfare loss relative to the optimal time-dependent
policy given a reference basic reproduction number (x-axis, vertical
dashed line). When the pathogen is less transmissable, then the optimal
policy will be overly cautious, leading to modest decreases in the death
toll, substantial increases in GDP loss, and substantial increases in
welfare loss, just as fixed policies are prone to misspecification errors
(as in Fig. 2). Likewise, when the pathogen is more transmissable, then
the optimal policy will be insufficiently cautious, leading to substantial
increases in the death toll, modest improvements in GDP loss, and
substantial increases in welfare loss (Fig. 2). Sensitivity analysis of
misspecification of other parameters indicates that the optimal policy is
fragile when the parameters directly affecting the reproduction number
are misspecified (e.g., the impact of employment on the spread of
the disease). In contrast, the policy remains robust to misspecification
of parameters that influence the reproduction number only indirectly
(e.g., the death rate, VRMR, or the expected arrival time of vaccine).

2.5. Robust feedback control in econo-epidemic models

Identifying optimal, time-dependent planning policies via open loop
algorithms leads to improvements in welfare loss compared to fixed
policies (see Fig. 3) provided they rely on accurate disease param-
eter estimates (see Fig. 4). However, a comparison of optimal time-
dependent policies did yield a dynamical insight — despite differences
in employment reduction associated with variations in underlying dis-
ease strength, the target levels of R,,, were relatively robust. For
example, when varying R, from 2.556 to 3.156, while we found ap-
proximately 400% relative differences in employment reduction during
the restricted phase, the R,/ relative difference was around 6% (see
Supplementary Figure S2). In this restricted phase, we observe an
emergent feature of disease transmission dynamics — the disease is
controlled at levels where R,;, < 1, but only slightly so. Maintain-
ing the effective reproduction number below 1 constrains exponential
increases in incidence without paying the economic cost of more re-
strictive measures. Hence, we implemented a feedback control planning
algorithm that tracks R,,, (note that real-time estimates of the ef-
fective reproduction number are increasingly accessible Gostic et al.,
2020). We implement the feedback control using the proportional—
integral-derivative (PID) control technique (Franklin et al., 2019) (the
algorithm is detailed in Supplementary Text B.2). Fig. 4a specifies
the resulting feedback control policy when optimized for the correct
and mismatched disease parameters (both stronger and weaker than
the reference parameters). Note that despite the misspecification, the
feedback control policy identifies similar (albeit slightly lagged) shifts
in the timing between initial, restricted, and relaxed phases. Moreover,
the welfare loss under the feedback control policy is robust to mis-
specification of parameters. We show the robustness of outcomes with
respect to the link between employment and transmission in Figure
S4; similar results hold for variation in the death rate, the incubation
period, the expected arrival time of vaccines, and the VRMR (value
of reduced mortality risk). This robustness of policy response in the
closed-loop case contrasts with the extreme sensitivity of the optimal
time-dependent employment reduction policy identified through an
open loop, optimal control algorithm (contrast green, feedback control
with purple open loop, optimal control in Fig. 4d).
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consistently outperform fixed policies.

3. Discussion

We developed and analyzed a social planning problem centered
on an econo-epidemic model that couples transmission dynamics be-
tween individuals with changes in employment. Our objective was to
identify a suite of feasible and robust social planning policies that
could minimize welfare loss as measured in terms of the value of
reduced mortality risk, i.e., accounting for fatalities averted during the
pandemic as well as GDP decreases arising from employment reduction.
In doing so, we considered a fully coupled model such that changes
in disease severity would decrease employment through endogenous
feedback which, in turn, would lead to decreases in transmission. The
social planner then has the opportunity to go beyond endogenous
response and restrict economic activity. As we show, although it is pos-
sible to devise an optimal, dynamic policy with reduced employment
that outperforms any fixed policy (e.g., lockdowns or otherwise), such
optimal dynamic policies can be extremely sensitive to misestimation of
disease transmission parameters and/or the impact of economic activity
on disease transmission. Indeed, implementing the incorrect ‘optimal’
dynamic policy can lead to mismatched timing of interventions and
significant increases in welfare loss. Instead, we show that such optimal
dynamic policies can be used as a guide for a feedback control pol-
icy, leveraging robustness properties and implementation principles of
proportional-integral-derivative (PID) controllers. As a result, a social
planner can implement a feedback control policy that is feasible (i.e., is
implemented via a combination of fixed policy blocks), nearly-optimal
(i.e., performs nearly as well as the optimal dynamic policy with perfect

information), and robust to misspecification (i.e., continues to perform
nearly as well as the optimal dynamic policy even when parameter
estimations are misaligned with reality). If prepared in advance, such
social planning policies could counter false dichotomies surrounding
prioritization of public health or the economy.

The COVID-19 pandemic is unlikely to be the last. Increasing mo-
bility that enables long-distance transmission, changes in climate that
facilitate expansion of pathogen geographic ranges, and increasing
stress placed at human-zoonotic interfaces can each contribute to in-
creasing the pandemic potential of endemic and emerging pathogens.
Specific threats include COVID-19, H5N1 (and other avian influenza
variants), as well as vector-borne viruses with pandemic potential
(Zika, Nipah, and others) (Jones et al., 2008; Salyer et al., 2017; Marani
et al., 2021; Bernstein et al., 2022; Holmes, 2022). These diseases pose
an increasing and critical threat to global health and economic security.
The June 2021 report of a high-level G20 panel posits that “We are in
an age of pandemics.... There is every likelihood that the next pandemic
will come within a decade — arising from a novel influenza strain,
another coronavirus, or one of several other dangerous pathogens.
Its impact on human health and the global economy could be even
more profound than that of COVID-19.” Hence, response to pandemic
threats requires planning scenarios that address the joint problem of
mitigating transmission risk while minimizing socioeconomic impacts.
For example, a study preceding the COVID-19 pandemic estimated that
pandemic impacts might approach 500 billion dollars per year (0.6%
of global income) (Fan et al., 2018). In fact, GDP decreased by ~3%
in 2020, or approximately 2.5 trillion dollars (Gagnon et al., 2023),
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Fig. 4. Comparison of epidemic outcomes given social planning policy guided by feedback, closed-loop control vs. open loop control. (a) Employment reduction
policies in the case of low, medium, and high disease transmission respectively. The curves contrast the optimal, open-loop continuous policies given accurate
knowledge of the disease state (dashed line) with a feedback, closed-loop control policy that does not use direct information about the disease state (solid line).
Impact of misspecification of disease parameters given variation in the basic transmission level, gy, , given differences in (b) death toll, (c) GDP loss, and (d)
relative change in WL. The optimal policy is highly sensitive to misspecification of disease transmission rates, whereas the feedback control policy approach is
not. The feedback policy maintains low levels of death, GDP loss, and overall welfare loss across different estimates of disease strength during planning.

consistent with interquartile range estimates of 2.6%—-4.2% total GDP
loss per year due to global warming by 2050 under a 1.5 °C increase
scenario (IPCC, 2023). There is a clear need to leverage lessons learned
from the COVID-19 response and improve public health infrastructure.
However, social fatigue, the spread of misinformation, and politiciza-
tion of public health response each presents challenges to coordinated
responses if a novel threat were to arise.

Here, the social planning response is guided by an idealized model
of disease spread coupled to an economic model. Both the economic
and epidemic model come with caveats. The epidemic model is based
on a SEIR model, an intentional oversimplification of complex disease
dynamics. Nonetheless, SEIR models or variants, including branching
process models, have features that closely resemble those in real out-
breaks (e.g., unimodal generation interval distributions) and are often
utilized in response to a novel outbreak (Park et al., 2020a; Read
et al.,, 2021). An important priority for future work is to evaluate the
dynamics of policy recommendations as parameter estimates and model
structure change during an outbreak. Changes may reflect recognition
of risk-stratification (Britton et al., 2020; Rose et al., 2021; Berestycki
et al,, 2021; Gomes et al., 2022; Berestycki et al., 2023), better-
performing models within a forecast hub (Cramer et al., 2022), and
updates to core transmission routes that inform intervention strate-
gies (Gandhi et al., 2020; Morawska and Milton, 2020). Extensions
should also address differential impacts on distinct regions (Kortes-
sis et al.,, 2020) especially when projecting from beyond the initial
outbreak phase (Kissler et al., 2020). Likewise, the economic model
is simplified. It can be extended by modeling the heterogeneity of
individuals (Brotherhood et al., 2024) and of firms or sectors (Kaplan

et al., 2020), explicit modeling of costs to policy implementation (Du
et al.,, 2025), and the formulation of learning mechanisms (Eichen-
baum et al., 2024). Likewise the epidemic model includes a relatively
simplified representation of outbreak dynamics. The model neglects
differences in asymptomatic, presymptomatic, and symptomatic trans-
mission, does not account for age-structure or heterogeneous mixing,
stochasticity, evolution of strains, nor spatially explicit dynamics aris-
ing from a combination of long-distance travel and local mobility
patterns. Nonetheless, the framework presented here could be adapted
to variations of both the economic and/or epidemic components of the
model. In doing so, it will be essential to consider to what extent social
planning is feasible, improves upon expected endogenous responses to
epidemics, and does not unintentionally induce increases in welfare
loss.

We anticipate that efforts to extend the social planning framework
in this paper to other epi-economic contexts will face similar tensions
in efforts to minimize the conflicting costs of the economy vs. mor-
tality and morbidity in the population. Here, we focused on a control
theoretic-approach to policy intervention that modulated activity rates.
By comparison, Du et al. (2025) evaluated the behavior of heteroge-
neous agents optimizing dynamic labor/work decisions under infection
risk and focus on behavioral heterogeneity and policy scenarios rather
than on a formal social-planner welfare-loss control problem. Like-
wise, Boucekkine et al. (2024) systematize the field’s conceptual and
mathematical challenges (non-convex disease dynamics, existence/suf-
ficiency in optimal control), but do not propose a concrete feedback
policy. Bonnet et al. (2024) map four model families and identify
limited coverage of disparities and poverty and limited developing-
country focus. Finally, Haw et al. (2022) formalize the causal study
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of econo-epidemics and enumerate key dataset and constraint needs
to advance this interface. We note that policy interventions could
include a broader range of options such as paid medical leave and
direct financial incentives, as in a recent study (Du et al., 2025). We
caution that strict use of open-loop control may remain sensitive to
misspecification of parameters associated with disease and behavioral
feedback. Instead, we advocate a multi-step strategy. First, open-loop
control can be used to identify a measurable proxy (e.g., here we focus
on the effective reproduction number of the disease Gostic et al., 2020)
to achieve desired outcomes (e.g., minimizing welfare loss). Then, the
optimal policy can be computed by feedback control such that the goal
of policy interventions is to aim the measured, effective reproduction
number to a given target value. The advantage of the closed-loop
control system over that of the open-loop control is its robustness to
parameter misspecification. The robustness in a closed-loop setting is
made possible by the flow of information from the realized dynamics
(and its deviation from expected dynamics) back to the social planner.
The flow of real-time information is absent in open-loop scenarios. This
robustness represents a strong rationale for consideration of closed-loop
control approaches for policy interventions in practice.

In closing, consistent with prior work focusing on control strategies
to manage COVID-19 epidemic dynamics (in the absence of socioeco-
nomic feedback Morris et al., 2021; Castro et al., 2020) we find that
optimal dynamic control policies are highly sensitive to misspecifica-
tion of parameters and dynamics, lead to mistimed interventions, and
increases in welfare loss. Although feedback control policies are robust
to the assumptions and feedback in the present econo-epidemic frame-
work, it will be essential to evaluate robustness to structural and param-
eter uncertainty in more complex models moving forward (Du et al.,
2025). Implementing policies that reduce welfare loss also depends on
the extent to which individuals take steps to reduce transmission in
response to perceived risk of infection. Increasing polarization (Leonard
et al.,, 2021) and/or social conformity (Morsky et al., 2023) could
limit the effectiveness of endogenous responses, thereby increasing the
need for intervention policies, while at the same time undermining the
effectiveness of policies. We recommend that efforts to communicate
optimal feedback control policies prioritize communication of the ben-
efits and rationale behind policies — both in terms of public health and
socioeconomic benefits. Doing so will not just require development of
more sophisticated models, but an increasing willingness to collaborate
across social sciences, economics, and public health.
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Supplementary Information for Integrating Macroeconomic and Public Health Impacts in Social
Planning Policies for Pandemic Response

A Econo-Epidemic Model Framework

A.1 The Planner Objective Function

A central social planner aims to minimize welfare loss WL caused by the disease, balancing the
death toll with economic cost. This is done by using a policy tool — employment reduction (L;) —
which restricts economic activity in order to reduce the spread of the disease. By economic activity,
we mean employment (hours of work), though this can be generalized.

The objective function of the controlled variable L;, to be minimized, is given by:

T T .
WL(Lt) = . 0f(Tv) /0 et (D + ¢L;) WLp + (1 — Dy — ¢I;) WL, + x - Dy] dt - dTy  (S1)
=
where

(i) f(Ty)— PDF of vaccine arrival time Ty.

(ii) fOT e~ "' —discounting of future values with interest rate r. Time T is the planner horizon.

(iii) The fraction of the population (itself normalized to 1) who do not work (including the in-
fected who are isolating) is given by D; + ¢I;, where WLp is the loss of welfare associated with a
person not producing.

(iv) The fraction of the population working is given by (1 — Dy — ¢I;) and WL is the loss of
welfare associated with a production level below an endogenously preferred level (more on this
below).

(v) The contribution to welfare loss from the death toll is given by x - D; with x > 0 is the value
of reduced mortality risk and Dy is the flow of deaths.

Welfare loss is measured by economic utility /welfare units, where we follow the modeling

precedents of previous research [1]. For welfare itself we use W = In (wn) — ”5—5 where 7 is the level

of economic activity (fraction of daily hours worked), w is the daily wage, and %5 is the disutility
from working, further explained below.

Specifically:

a) WLp = (ln (w) — %) is the welfare from working full time; this is lost for people not working,
D; + ¢1;.

5
b) WL, = — (ln (%) +1 (1 — (MM) )) is the loss of welfare when employ-

ment #; is restricted by policy to be below the level endogenously chosen by individuals, discussed
below.

c) The level of economic activity is restricted by n; = 1 —max(b(Dy, t), Lt)) where L; is the policy
tool and b(Dy, t) captures the endogenous response of individuals, which expresses both fatalities
awareness (being a function, b, of the flow of deaths, D;) and issues related to time, such as fatigue
(dependence on t).

d) Both L; and 1 — b(Dy, ) are bounded from above by L capturing the maximum attainable
restriction on economic activity.

Planner’s horizon T is set so that the probability of vaccine arrival before that day exceeds 99%.

The idea of a social planner has been used extensively in studying social welfare. The latter
concept has been discussed since the early 20th century (see for example [2—4] ). A social planner
is a hypothetical decision-maker who attempts to maximize some notion of social welfare. The
planner is a fictional entity who chooses allocations for every agent in the economy that maximize
a social welfare function subject to certain constraints. The welfare loss function used here serves
this purpose and has been widely used in studying COVID 19, as for example in [5] .



A.2 Epidemic Dynamics

We use the SEIR model framework while explicitly tracking deaths. The following equations de-
scribe the nonlinear dynamics of this model, in which each variable represents a fraction of the total
population.

St = —BiLsSt (52)
E: = Bi1,S; — oE; (S3)
[y = 0Er — 41, (S4)
Ci = 6yl — 0C; (S5)
D; = 6C; (S6)

Ri = (1= 8)v; (S7)

where R is the fraction of the infected that recover and C is the fraction who become severely sick
and eventually die. Throughout, B denotes a transmission rate, ¢ is the incubation rate, <y is the
removal rate of which 1 — § recover and J transition to a severely sick state leading to new fatalities
given a death rate 6 given severe illness. In this model, the basic reproduction number Ry is given
by:

Ro =0 (58)

and the time-varying effective reproduction number is given by:
_p bt
Rg(t) =Ry = St? (S89)

We model the transmission rate ; as a function of three factors:

Bt = pw — BN (1 - :sts) + Baexp (—At) (S10)

where 1; is the employment reduction relative to the maximum ngg. The formulation is motivated
as follows:

a. By is the transmission rate when the economy is open, i.e., production and employment are
not restricted.

b. Bn parametrizes the scale of the decline in transmission as activity falls (decline in J’T{S, em-

ployment relative to its steady state), using a power function with parameter «.
c. Baexp (—At) expresses the decline in transmission due to rapid learning over time by indi-
viduals after the outbreak begins over a characteristic time scale 1/ A.

Thus, at time t = 0, when ‘& = 1 we get:
n

Bo = Ba + Bw (511)

which is the transmission at the initial stage and corresponds to Ry = bo,

After a period of time, which depends on the rate of decline A, individuals change their be-
havior, and when exp (—At) < B we get that the transmission rate (and hence R) rises with
employment:

B = Pw — P (1— ’”)a (512)

nss

A.3 Macroeconomic model

The economy is modeled via a linear production function, with constant wages, and output is fully
consumed, where all state variables are monitored per-day. In the model, y; is GDP and ¢; is con-
sumption. The government imposes a lockdown policy L;. Steady state (SS) employment (fraction



of daily hours worked) is 1, i.e., ngg = 1. Total population is also normalized to 1. The following are
the key relations:

yve = Am (S13)
w = A (S14)
Yo = C=wn (S15)

Next, we provide details on the factors that set employment ;.

Individual Utility Maximization Individual utility is given by:
U = u(ct) — ov(ne) (S16)

There is positive utility from consumption and disutility from labor. Prevalent functional forms are:

u(ct) = In(ct) (517)
144 ”}Jrg”
o(n) =6 e (S18)

We use an empirically based value of Frisch elasticity {, = 4. In the optimal solution n; = é ; as
ngg = % =1,wegetd =1.
At steady state where ngs = 1 we get:

1

o(nss) = 5 (S19)
such that
1
Uss = In(css) — ¢ (S20)
= In(w)+In(ns) —
1
= In(w)— 5

Out of steady state we have:

13
Ui = In(w) +In(n;) — -2+

5 (521)

In the outbreak, there is an endogenous response of individuals to incident fatalities, Dy, so the
utility function is modified as follows:

5
Uy = In (w) +1In (n;) — é (1b’EtDtt)> —1In (1—b(Dy, 1)) (S22)

where b is the endogenous response.

Consequences for Employment The macroeconomic model assumes that employment is deter-
mined in two ways:

a. the planner imposes lockdowns L;. This is set by equation (S1), i.e., by minimizing social harm
subject to all of the constraints.

b. the individual sets desired employment by utility maximization as discussed in sub-section
A3.

We posit that the stricter reduction in employment — by lockdown or by the individual response
— dominates. Employment thus behaves as follows:

ny =1 —max{b(Dy,t),Lt}). (S23)



A.4 Computing Welfare Loss In Equivalent Consumption Terms

We wish to convert welfare loss to equivalent consumption loss. Consider steady state and period
t welfare. Using Egs. 520 and S21 we define welfare loss WLy (1) to be:

WL (n) = Uss — Uy = In (w) — % — |In(w) +1In(n;) —%? =—In(n) — % (1 —nf) (S24)

So the inverse function WLy ~! (WL;) converts welfare loss terms into an equivalent loss in
employment and consumption terms.

For example WL ; 1(0) =1, s0 n; = 1. There is no reduction in welfare; this corresponds to full
employment.

As WL, rises WLy ~! (WL;) falls, so we define the corresponding employment and consumption
reduction, CL, as:

CL(WL;) =1— WLy ~* (WLy) (S25)

This function maps WL; to the corresponding equivalent reduction in consumption (in %).
In our model WL; is the welfare loss, which is the integrand of the objective function :

WL; = (D + ¢I;) WLp, + (1 — Dy — ¢I;) WL + x - Dy (S26)

In order to compute the equivalent consumption terms loss we compute

PDV_CL = /
0

T T (Dt + ¢I) WLp,
et (1 — WLy ! (WLt)> dt = / e [1-WLy V| +(1=Dy— L) WLy, | | dt
0 +x - D

(S27)

B Optimal Policy Identification

B.1 Optimal control algorithm

In line with formalism from theories of optimal control [6], the state equation has the form

x(t) = p(x(t), Le), (S28)

where t € [0,tf] is the time-variable for a given t; € (0,0), x(t) € R™ is the state variable and

L; € R* is the input-control variable. In our model, we set m = 6, where x(t) represents the
state of the pandemic in time ¢. 1 is the function governing the pandemic dynamics. Additionally,
k = 1 as the input, L, corresponds to the reduction in employment. We assume that an initial
condition x(0) := xp € R™ is given and fixed. The optimal control problem is to compute a control
{L¢ : t € [0, 5]} which minimizes the following cost functional,

1= [ otxto, Lo, (529)

for a suitable cost function Q : R™ x RF — R, subject to pointwise constraints of the form L; €
L(t), where £(t) C R¥ is a time-dependent compact, convex set. Additional constraints on the
input-control signal may be imposed such as piecewise continuity in the time-variable t. If the
input control L(-) satisfies all of those requirements, it is said to be admissible. Our cost function is
presented in Eq. S1, where | represents welfare loss, incorporating both the mortality impact of the
disease and the economic costs associated with employment reduction. £(t) is always the interval
[0,0.25], indicating that the maximum possible employment reduction is 25%. The costate variable
p(t) € R™ is defined by the following equation,

T T
o) =~ (Sexn10) - (S60,20) (530)



with the boundary condition p(t;) = 0. We remark that the boundary condition p(ty) is specified
at the final time t¢, and not at the initial time fo := 0 as for the state equation (528). Therefore,
numerical computations of the costate have to be performed backwards in time after the state x(t)
has been computed for all ¢ € [0,#¢]. Throughout the forthcoming discussion, the time variable
t € [0, t¢] is continuous. The term “computation of a time-dependent variable for all ¢ € [0, #¢]” im-
plicitly assumed computation over a given approximation grid.

A key element in the characterization of an optimal control is the Hamiltonian function H :
R™ x RF x R™ — R, defined as

H(x,u,p):=p wlx,u) +Q(x,u). (S31)

Given an admissible control Ly, let x(-) and p(-) be the state trajectory and costate trajectory, respec-
tively, associated with L(-). Given another admissible control, L(-), define the function | : [0,1] — R
in the variable A as

JA) :=J(L+A(L-1L)). (532)
Then under suitable assumptions [7], the one-sided derivative %(0) satisfies the following in-
equality,
dJ ty »
S5 < [T (HG0, L p0) — HG0), L, p(0) (533)

we note that here x(t) and p(t) are the state variable and costate variable, respectively, correspond-
ing to the input control L(-). This result implies the maximum principle whereby if L(-) is an
optimal control, then at almost every ¢ € [0, t], Lt is a minimizer of H(x(t), L, p(t)) over L € L(t).
The reason for this is that if the maximum principle is not satisfied at L(-), then a descent direction
for J(-) can be obtained from L(-) by L(-) satisfying the inequality

H(x(8), L, p(8)) < H(x(t), Ly, p(1))
forallt € [0, tf], and
| G0, L p() — Hx(w), L, pe)dt < 0

contradicting the supposition that L(-) is an optimal control. In the special case where L; is a point-
wise minimizer of H(x(t),L, p(t)) forall t € [0, ], L(-) is a steepest descent direction.

The maximum principle leads us to the following iterative algorithm for the optimal control
problem.

Hamiltonian-based algorithm.

Fix a constant A > 0 (to be used as a stepsize) and an initial control, Ly(-).

Given a control Lk(~), k=0,1,2,..., compute the next control, Lk+1(-), as follows.

Step 1: Compute (numerically, via an approximation) the state trajectory x*(-) defined by (S28), and
the costate trajectory p¥(-) defined by (S30 ).

Step 2: For each t € [0, ], compute a point L¥(t) € R¥ satisfying

L¥ € argmin{H(x*(t),L, p*(t)) : L € L(t)}. (S34)

Step 3: Set LF1(-) = LK(:) + A(LX(-) — LK(-)). O

For the step size we chose A = 0.01. In making this choice we err on the side of simplicity of
coding the algorithm while slowing down its convergence rate as compared to larger, variable step
sizes without guarantees of convergence but a faster approach towards regions of optimal control.
This choice was based on the realization that in a practical setting of pandemic management the
optimal control program would be executed, off line, once per several days or weeks.

Our functions

x(t) is the state of the pandemic in time ¢. It's described by the fractions of the populations that are:
Susceptible, exposed, infected, recovered, severely sick, and dead. That is m = 6, and x(-) € R®.
P(-) is the functions that govern the pandemic dynamics. We use the SEIR model, described in



appendix A2.

L; is the employment reduction in time ¢. Thatis, k = 1and L(-) € R.

L(t) is the possible employment reduction in time . We set it to be the interval [0, 0.25].

Q is the integrand of our loss function, defined as the objective function in Eq. S1 . Therefore,
J = WL(Ly).

B.2 Feedback control algorithm

Due to the fragility of open-loop optimal control, it is a common practice in applications to first
compute an open-loop optimal control solution, use it to compute a corresponding output, then use
that output as the reference signal to be tracked in real time by the feedback control. Observe that
the formulation of the optimal control problem defined by Egs. 528 and 529 makes no reference to a
system’s output, and it is up the the feedback-controller’s designers to choose an output according
to practical considerations including the effectiveness and efficiency of the control law.

A schematic for the closed-loop system is depicted in Figure S3. The reference signal p(t) is
the object of tracking by the output of the econo-epidemic system, ¢(¢). The input to the econo-
epidemic system, L, is the output of the secondary controller, which has two inputs: the error
signal e(t) = p(t) — ¢(t), and the input error Ly — L§, with L{ being the output of the PID controller.
The objective of the controller is to ensure that limsup;,_, ., ||e(t)|| be small to within specifications.

The optimal control problem considered in this paper has the particular constraint that the input
signal L;, representing a policy, be piecewise constant with a limited number of value-switchings
and lower bounds on the dwell-times (i.e., lengths) of constant-value periods. This constraint clas-
sifies the problem in the category of hybrid switched-mode optimal control [8], whose solution,
typically by computational means, may be complicated and time consuming due to the presence
of large numbers of local minima. An alternative approach is to migrate the task of guaranteeing
the constraint from the optimal-control’s algorithm to the design of the feedback control. What
makes this approach reasonable is the fact that for the considered optimal control problem, a suit-
able choice of the system’s output, {(t) = R, computed from an optimal control solution, has a
near-constant value throughout a large part of the time horizon for the problem (which is, just un-
der 1). Furthermore, the value of that constant is robust with respect to tested model-parameter
uncertainties.

The feedback control law that we chose is founded on a version of the Proportional-Integral-
Derivative (PID) controller [9]. In continuous-time systems, the commonly-used PID control has
the following form,

Ly = Kpe(t) + K; /Ot E(T)dT + KDé(t). (535)

The designations “proportional”, “integral” and “derivative” refer to the three respective relation-
ships between e(t) and L; defined by Eq. S35. Thus, the first term, Kpe(t), is the proportional term,
the second term is the integral control, and the third term is the derivative element; the constants
Kp, K and Kp, all positive, are their respective gains.

An improvement of the PID controller may be achieved by directly controlling L; instead of
L; [10]. Taking derivatives with respect to time in Eq. S35, the resulting control has the form

Ly = Kpé(t) + Kre(t) + Kpé(t). (S36)

While the various terms in Eq. 536 are functions of continuous time ¢, they may have to be computed
via discrete-time approximations. We use the following approximation due to its computational
efficiency:

LF — L1 = Kp(ex — ex_1) + Kiex_1At + Kp(ep — 2,1 + ex_p) /At (837)
k=1,2,..., Ky; here e, := e(kAt), At is a fixed sampling period, and LF acts to approximate Lyp;.
The range of kis {0, ..., Ky} where Ky := [t;/At] is the largest integer not exceeding t;/At, L is a
given initial condition, and it is assumed thateg, k = 0,1,..., [t ¥ / At] can be read from the system at
time kAt. We applied the discrete-time PID controller defined in Eq. (537) with At = 0.01.

In applying the PID controller (Eq. S36) via the approximation defined by Eq. S37 to the epi-
demic social planner problem, we took the input control to be the employment relative to its pre-
pandemic steady state, namely L; := n; (see Eq. S10 with ngg = 1), and the system’s output ()



to be the effective reproduction number of the epidemic, R.(t). The choice of L; is reasonable since
it provides the planner with a direct policy control influencing both the mortality rate and welfare
loss. Regarding the choice of the system’s output, simulation-based evidence has shown that ac-
cording to the open-loop optimal control, R.(t) converges to and then maintains a near-constant
value slightly less than 1, for a significant part of the simulation horizon.

The configuration of the feedback system is depicted in Figure S3. Note that the PID controller
is not used directly to shape the input L; of the econo-epidemic system, but rather serves to com-
pute L{ from the tracking-error signal of the econo-epidemic system, e(t) := p(t) — ¢(t). This
computation, performed in real time, is defined by Eq. S36 and approximated by Eq. S37. The
resulting signal L} typically is continuous, or at least piecewise continuous, in contrast with the in-
put to the econo-epidemic system, L;, which has to satisfy the aforementioned piecewise-constant
constraint. This constraint is ensured by the controller in the lower loop of the figure, marked as
the “secondary controller”. It is a time-varying system with two inputs, the tracking-error signal
e(t) := p(t) — Re(t) as well as the input-error signal Ly — Lf, and a single output, L;+.

Definition of the secondary controller
The purpose of the secondary controller is to ensure that the input signal to the econo-epidemic
system, L;, satisfies the piecewise-constant constraint. To describe its dynamics, we denote by P;,

j=1,2,..., the j* maximal time-interval (period) during which L(-) has a constant value, labeled
a constant-value period. Let t; € [0,t7) denote the starting time of P;, and observe that P; = [t;, #;1].

The constant value of L; throughout t € P]-, and the end time-point of Pj, tit1, are defined as
follows. Given a f-dependent function Ej (t) > 0, a constant E; > 0, and a f-dependent function
E;(t) > 0, respectively labeled as input-error threshold, tracking-error threshold, and dwell-time thresh-
old. Consider the starting time of P, t;, for some j = 1,2,..., such that tj <ty Recall that the
PID controller runs in real time (or, better to say, approximates a real-time computation by using a
given finite grid). We set L;; = Lcj, which determines that L; = Lf]_ Vt € P;. Meanwhile, L{ keeps
on changing according to the computations by the PID controller. The constant-value period, P;, is
terminated in response to one of the following two events, whichever occurs first:

Fort € Pj,
1. [Ly — L§| > Er(t) and le(t)| > Er and t—t; > E4(t),
2. t= tf'

In case of Event 1, we set t;, 1 = t and reset L;.,, = L{. , while in case of Event 2, we set t:,1 = tv.
Jt ti1 t+ f

j+1
Observe that the input error L; — L is reset to zero at the starting time of every constant-value
period P;,j =1,2,....

We chose the time-dependent function E () to be reset at the start of every constant value period
P]-, namely at time tj,toa given base value by := E[ (0) thatis independentof j = 1,2, .. .. Thereafter
EL(-) is monotone decreasing during an early part of P;, and monotone non-increasing throughout
P;, thereby guaranteeing that Ey () jumps upwards to the value by at every time t;, j = 1,2,.... This
form of the input-error threshold Ep(-) is designed to require larger input errors for terminating P;
sooner rather than later after its starting time. This, in turn, would tend to limit from below the
dwell times (lengths) of constant-value periods hence potentially limiting from above their total
number throughout the interval ¢ € [0,¢]. On the other hand, the time-dependent function E(t)
was chosen to be monotone increasing throughout the interval [0, (], and have no resets. This was
designed to permit more frequent switchings of constant periods early in the interval [0, t;] rather
than late, which may be useful shortly after the outbreak of the pandemic, when the effects of
modeling errors on loop signals can be large and costly as compared to later stages of the epidemic.

The specific functions Ej () and E;(-) as well as the value of E; were chosen based on simula-
tions of the system with various parameters. The resulting parameters of the PID controller are

Kp =0.05, Ky = 0.6, Kp = 0.00001. (S38)
For the secondary-control parameters, the threshold function Ey (-) has the form

Ep(t) =br —ar(t—t;) (539)



throughout the first part of P;, where by, := E L(t]') is the base level at the start of P; and a; > 0is
a given constant. Er(-) is switched to a constant mode in the event that it reaches a given lower
threshold level 6, > 0, and it maintains that level until the end of P;. Thus,

Ep(t) = max{b, —a(t —t;),00}

throughout Pj, for given by, > 0, ap, > 0, and 6 > 0. We used the parameters b;, = 0.1, a; = 0.001,
and 0; = 0.03, and E; = 0.03. Further, the threshold function E;(t), t € [0,¢ f] is an affine function
of the form

Ed(i’) = agt + bd/ (840)

for a constant a; > 0 and a base level b; > 0. We chose a; = 0.1 and b; = 14.

The basic time unit for the problem under consideration is a day, and the end time is {; = 630
days. We used the discretized PID controller defined by Eq. S37 with At = 0.01, hence it, performs
a computation every 14.4 minutes. The secondary controller performs on the same schedule as the
PID controller.

Regarding other quantities of the model, by Egs. (S8) and (59) the output of the econo-epidemic
system is

E(H) == Ro(t) = s%

where S; is the susceptible fraction of the population, j; is the pandemic’s transmission rate defined
by Eq. S10, and 1, the inverse of infectiousness period, taken at v = 0.25 (see Supplementary
Table S5). The total duration of the simulated epidemic is t; = 630 days. The simulation results,
depicted in Figure 4, indicate a substantially better tracking of the feedback control over an open-
loop optimal control.

C Calibration

To provide a recent, familiar baseline, we calibrate the model to fit the U.S. economy as impacted
by COVID19 [11]. Throughout, we work in daily terms. We calibrate the baseline used for simula-
tion, while noting that calibrated parameters represent a plausible benchmark for our exploration
of social planning policies for future pandemics. As a result, our evaluation of optimal policies
includes simulations in parameter regimes that depart from this benchmark — sometimes in sub-
stantial ways. We then evaluate the extent to which social planning policies function effectively in a
broad range of parameter choices while evaluating the possibility that the planner is uncertain and
likely incorrect in their estimation of parameters before designing policy rules.

C.1 Calibration of the Epidemiological Model

Estimates of the latency period (1/0) and the infectiousness period (1/) rely on studies from early
in the COVID-19 pandemic [12, 13] . Their findings are confirmed by studies on infector-infectee
pairs [14]. The Infection Fatality Rate (IFR), denoted §, is based on estimates from the Imperial
College COVID-19 Response Team [15] and a meta-analysis findings [16]. These sources estimate
the IFR at 0.8%. The meta-analysis reports that the IFR of the disease across populations is 0.68%
(0.53% — 0.82%), though it is noted that due to high heterogeneity, this might be an underestimate
of the true IFR [16]. The typical duration of transitions from I to D is set at 11 days such that
the average time between infection to death is 18 days, including both the incubation and infectious
periods; we note that this period is consistent with but somewhat shorter than estimates for COVID-
19 of closer to 21 days when including the distribution from infection to onset of symptoms and
from symptoms to death [17].

C.2 Estimation-based Calibration of Transmission

We employ daily U.S. data to estimate key relations and use the point estimates to calibrate the
model. The data series used are daily deaths, daily employment, lockdown measures, and the



derived transmission rate. We estimate the equation for j; :
n &
Bt = Bw — BN (1— ”SS) + Baexp (—At) (S41)

The results are shown in Table S2. The estimates imply the following. When % = lie, the
economy is not locked and there are no sick or dead, at time ¢ = 0:

Bo = Ba + Bw = 0.339 4+ 0.376 = 0.715

and so Ry = % = 2.86 Given the estimated rate of decline, A = 0.12, in a little less than a month

individuals adjust their behavior to the presence of the disease; subsequently, when exp (—Af)
< Bw we get:

o= b= (1- s )

This implies B; drops endogenously below By as a function of employment, yielding reproduction
parameter R variation between 1.5 and 0.8.

C.3 Calibration of the Economic Model

C.3.1 Discounting.

We posit a 4% annual discount rate (r = 0.04), converted to daily terms (used by individuals and
consequently by the social planner).

C.3.2 The value of ¢.

As assumed in prior work [18], we assume that anyone who has any symptoms self-isolates and
does not work (¢ = 1).

C.3.3 The endogenous response, lockdown policy, and employment

First, we follow the functional form proposed by previous work [19, 20] and postulate that the
endogenous response function g(Dy, t) is given by:

g(Dt/ t) = KtDt (842)
where
ke =x(1—(1—¢x) fi) (543)
ft = normal_cdf (7) (544)
f

where normal_cdf is the CDF of the normal distribution, «; is the time-varying parameter of the ef-
fects of the individual response on employment, and the parameters y £r 05 @ and «x are estimated.
The parameter «; express the idea that the endogenous individual response exhibits time decay f;.
Next, we note that there is an overlap of compliance with lockdown and the endogenous re-
sponse, so we use the maximal response as follows:
N; .
-1 L, x:D 545
Nss max(L¢, k¢ Dy) + & (545)
We non-linearly estimate equation 545 using U.S. data on %, L, and Dy in the period from
March 1, 2020 to February 28, 2021. The results are as follows:

N, )
Nists =1—max(L¢, x:Dy) + &



Finally, we take into account that without restrictions, employment would drop significantly.
This can even reduce employment to levels below what is usually regarded as essential employment
plus work from home. Empirical estimates for the U.S. indicate that the minimum employment
level under the most stringent lockdown measures was around 0.65 — 0.70 of full employment [21,

]. We therefore calibrate this level of employment to be 0.68 and set L = 0.32.

C.3.4 Employment, Wages, and the Utility Function.

For the planner problem and the simulations we further need to calibrate w and A. To do so we use
two U.S. data points, as in a prior research [23]: the representative person earns an annual income
of $58,000, using the 2019 estimate from the U.S. Bureau of Economic Analysis.

Thus, pre-epidemic, which we call steady-state (SS), when g(Dt, t) = 0 we get that the daily
income w e is:

58000
= s = 1589 (S46)

We set A = w.

C.3.5 Value of reduced mortality risk.

The planner objective includes the term P55 - Dy - VRMRY, where VRMRUY is the value of reduced
mortality risk. We determine its value and show how it fits in the social welfare function.

The central estimate for the monetary value of reduced mortality risk lost to COVID-19, VRMRYSD
is 3.81 million USD, based on the EPA estimate of 270, 000 USD per year and an estimate of 14.1 years
of remaining life on average [24].

To include these values in the social welfare function, we apply an oft-used methodology [25],
as follows: denote the value of reduced mortality risk in utility terms by VRMRY, so that the
event of death in the model is associated with utility loss of VRMRY. Individuals are indifferent
between paying SHARE( of their flow consumption and avoiding the risk ¢ of losing VRMRY, and
not paying SHARE( of their flow consumption and carrying the ¢ risk of losing VRMRY. Given
the no-epidemic steady-state utility, this logic means that VRMRY should satisfy the following
indifference condition:

5 5
1 m—_ In((1—SHARE¢)c) — &
Infe) =% _ yrmry = - c)) 3 (847)
where USD
VRMR
SHAREc =~ " (S48)
365

The representative agent would be willing to pay SHARE( so as not to lose VRMRY with an e
risk of death; the payment, SHARE, is given by equation 548, paying eVRMRYSP x r each day,
where 7 is the daily discounting rate is r.

Assuming SHARE: < 1 we get —In (1 —SHARE) ~ SHARE and using our modeling of
C =Y (which we have taken to be 58,000 USD), we get:

usb
SHARE. 3o
eVRMRY = o
r r
VR RUSD
VRMRY = YRMR~ x 365 (549)

yusbD

Thus the VRMRY value we get is 23,977 ~ 24,000 (also denoted x) for the baseline VRMRYSP
value of 3.81 million USD.
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C.3.6 Vaccine Arrival Rate

The term f(Ty) is the probability density function of the availability of a vaccine at time Ty . This is
an important term as it sets the horizon for the problem, acting as a hazard rate for leaving the state
of the pandemic. It is an expression of the essential risk and uncertainty embodied in the planner
problem. Note that were we to model an arrival time known with certainty, not only would an
important real world aspect be removed, but such modeling might create an artifact in the optimal
plan. The planner may enable an outbreak shortly before vaccine arrival, relying on the vaccine to
eradicate it. Such a plan is not robust to delays in the arrival time. Relative to the interest rate r,
expressing time preference, f(Ty) plays the major quantitative role in discounting future streams.

We assume the Gumbel distribution, justified by the following logic. We assume that the arrival
of the vaccine is a result of simultaneous competition among many firms. The time of arrival is the
minimum development time across these firms. Note that over the course of 2020-2022 over 110
vaccines were in clinical trials and dozens more in pre-clinical evaluations. The distribution of ar-
rival time is then well approximated by a Gumbel distribution [26], which is a member of the family
of extreme value distributions. Specifically, it is used for modeling the minimum of a sample from
many distributions, including exponential, logistic, and normal distributions. Under mild regular-
ity conditions, it is suitable to be a model for a sample minimum even when the distributions from
which the sample is drawn are unknown. In our setting, we remain agnostic about the distributions
of vaccine development time by individual firms.

In terms of the model, Ty refers to the time of sufficient vaccination. With logistics, production
times, gradual take-up rates, etc. an ex-ante expected 540 days seems reasonable relative to the
March 2020 start date of the epidemic in the U.S.

The cumulative distribution function G (x) of a Gumbel distribution is defined over the real
numbers and parametrized by a location parameter ji; and a scale parameter o :

G(x;ug,06) =1—exp (— exp <x(_TGMG>) (S50)

We anchor the distribution’s parameters (jg, 0 ), by positing that the mean of the distribution
is 540 days, and that the probability of sufficient vaccination before day 360 is only 1%. These
assumptions engender two linear equations:

E(Gumbel (ug,06)) = uc — EulerGamma - 0 = 540
Q(Gumbel (pg,05),9) = He +log (—log (1 —q)) - og = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540 and Q(g = 0.01) = 360
leads to the solution of yug = 565.83,0; = 44.74.
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D Supplementary Tables

function description formal representation
f(Ty) Gumbel distribution for vaccine arrival | f(Ty; ut,,0r,) =1 — |exp (— exp (%))
b(Dy, L, t) employment response max(x;Dy, L)
KDy endogenous response kD =x(1— (1 —¢x) - ft) Dt
ft = normal_cdf (16(7;7
L; lockdown policy constraints L>Li>0

Table S1: Econo-epidemic functions to coupled vaccine arrival, employment, endogenous response,
and constraints.

| Ba A Bw BN x|
0.339*** 0.12*** 0.376*** 0.53*** 0.69
(0.05) (0.01) (0.05) 012)  (0.31)

Table S2: Estimates of transmission relevant parameters given model fits, such that R* = 0.74,
RMSE = 0.0307, and n = 351 — complete details of model fitting are available in [11]. Elements
are point estimates with standard errors in parentheses, and significance noted as *p < 0.10,"* p <
0.05,"** p < 0.01.

Parameter Description Numerical value
max{0.1 — 0.001(t — ¢;),0. tep;,

Eu(t) Input error threshold for eve{zgy COr?Sant(peri (]) Zi’ (;)(33]}/_ 1%2, ] g
E;(t) Dwell time time threshold 0.1t 414

E; Tracking error threshold 0.03

Kp Proportional control gain 0.05

K; Integral control gain 0.6

Kp Derivative control gain 0.00001

Table S3: Parameters for the PID control algorithm. Data presented here was mentioned following
the discussion of the PID algorithm (the space between equations S38 and S40, inclusive) and it is
provided here in order to complete the summary discussion.

| K Px Hf o |
30,500*** 0.18*** 245%** 27.5%%*
(0.0001) (0.01) (2.36) (2.68)

Table S4: Economic model parameterization based on U.S. data during the period of March 1, 2020-
February 28, 2021. The tables report point estimates with standard errors in parameters in paren-
theses, noting that R?Z = 0.99, RMSE = 0.0139, and n = 365. Significance levels are noted as
*p < 0.10,"* p < 0.05,** p < 0.01. The complete model fits are available in [11].
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parameter description numerical value source
r daily interest rate % prevalent assumption
¢ fraction of ill not working 1 assumption
X weight assigned to death flows 24,000 VRMR est.
0% inverse of infectiousness period }1 epi lit
o inverse of latent period % epi lit
6 death rate 0.008 clinical lit
0 inverse of period I to D % clinical lit
Bw baseline transmission rate 0.376 est.
B employment effects scale parameter 0.53 est.
« power of employment effects function 0.69 est.
Ba time effects scale parameter 0.339 est.
A exponential parameter in time effects 0.12 est.
w=A daily wages, productivity 158.9 data
K scale parameter endogenous response 30,500 est.
Pk parameter endogenous response 0.18 est.
Hr mean of fatigue function 245 est.
oy std of fatigue function 27.5 est.
Uty location parameter of Gumbel distribution 565.83 est.
0Ty, scale parameter of Gumbel distribution 44.74 est.
L maximum restriction of economy 0.32 epi lit
T planner’s horizon 630

Table S5: Estimated disease parameters used in the econo-epidemic model derived in part from [11].
Note that the text uses the variables ¢ and T interchangeably to denote the planner’s horizon.
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Figure S1: Baseline outbreak dynamics, endogenous response, and fatalities in the absence of optimal, policy-driven
employment reduction. Dynamics depict cases of Ry = 3.156 in a no employment reduction context (panels (a) and (b)) and
with relaxed employment reduction (panels (c) and (d)). In both context, as death rates rise, individuals reduce interactions,
sometimes more stringently than government-imposed employment reduction (whenever the blue curve is higher than the
black curve). In (a)-(b), no reduction policy is imposed, leading to rapid spread and increasing deaths until the population
reacts. In (c)-(d), the imposed restrictions are insufficient, prompting tighter individual measures as death rates escalate.
Over time, the anticipated arrival of vaccines weakens the individual response, evident in both scenarios, where later larger
death spikes elicit a diminished endogenous reaction. The cumulative fatalities per 100,000 in the two scenarios are 378.08
per 100,000 in case (a)-(b) and 280.02 per 100,000 in case (c)-(d).
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Figure S52: Econo-epidemic dynamics given optimal stepwise response policies. The policies outlined represent the op-
timal, open-loop stepwise approach for basic transmission rates (Bw) of 0.3, 0.376, and 0.45, respectively for low, medium
and high cases assuming accurate knowledge of disease parameters. As the basic transmission rate increases, the disease
spreads more rapidly, necessitating a more stringent optimal policy. However, even with these measures, increased rates of
infection and mortality may still occur as the basic disease transmission rises, due to the severe economic repercussions of
overly aggressive employment reductions. The optimal policy appears to maintain the effective reproductive number (R.f)
close to 1.
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Figure S3: The relationship between the feedback controller and the controlled system.
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Figure S4: This Figure presents similar results to as in Figure 4, but with respect to variations in B instead of variations in
Bw. The optimal, open-loop policy is sensitive to misspecification of the impact of employment on the spread of the disease,
whereas the feedback, closed-loop policy approach is not. The policy using feedback control maintains death toll (a), GDP
loss (b) and WL (c) in levels that are close to optimal across all levels of employment impact.
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